molecular formula C19H20FNO3 B3026791 (3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE CAS No. 112058-85-2

(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE

Katalognummer: B3026791
CAS-Nummer: 112058-85-2
Molekulargewicht: 329.4 g/mol
InChI-Schlüssel: AHOUBRCZNHFOSL-RHSMWYFYSA-N
Achtung: Nur für Forschungszwecke. Nicht für den menschlichen oder tierärztlichen Gebrauch.
Auf Lager
  • Klicken Sie auf QUICK INQUIRY, um ein Angebot von unserem Expertenteam zu erhalten.
  • Mit qualitativ hochwertigen Produkten zu einem WETTBEWERBSFÄHIGEN Preis können Sie sich mehr auf Ihre Forschung konzentrieren.

Beschreibung

Es wird häufig als Antidepressivum verschrieben und hat sich bei der Behandlung verschiedener psychischer Erkrankungen, einschließlich Depressionen und Angststörungen, als wirksam erwiesen .

Herstellungsmethoden

Synthesewege und Reaktionsbedingungen

Die Synthese von Paroxetin-Hemihydrat umfasst mehrere Schritte, ausgehend von der grundlegenden chemischen Struktur von Paroxetin. Der Prozess umfasst die Bildung des Hydrochloridsalzes und die anschließende Kristallisation, um die Hemihydratform zu erhalten. Spezifische Reaktionsbedingungen, wie Temperatur, pH-Wert und Lösungsmittelwahl, sind entscheidend, um die Reinheit und Ausbeute des Endprodukts zu gewährleisten .

Industrielle Produktionsmethoden

Die industrielle Produktion von Paroxetin-Hemihydrat folgt ähnlichen Synthesewegen, jedoch in größerem Maßstab. Der Prozess wird auf Effizienz und Wirtschaftlichkeit optimiert, wobei häufig automatisierte Systeme und strenge Qualitätskontrollmaßnahmen eingesetzt werden, um Konsistenz und Reinheit zu gewährleisten .

Vorbereitungsmethoden

Synthetic Routes and Reaction Conditions

The synthesis of BRL29060A hemihydrate involves multiple steps, starting from the basic chemical structure of paroxetine. The process includes the formation of the hydrochloride salt and subsequent crystallization to obtain the hemihydrate form. Specific reaction conditions, such as temperature, pH, and solvent choice, are crucial to ensure the purity and yield of the final product .

Industrial Production Methods

Industrial production of BRL29060A hemihydrate follows similar synthetic routes but on a larger scale. The process is optimized for efficiency and cost-effectiveness, often involving automated systems and stringent quality control measures to maintain consistency and purity .

Analyse Chemischer Reaktionen

Arten von Reaktionen

Paroxetin-Hemihydrat unterliegt verschiedenen chemischen Reaktionen, darunter:

Häufige Reagenzien und Bedingungen

Häufige Reagenzien, die in diesen Reaktionen verwendet werden, umfassen Oxidationsmittel wie Kaliumpermanganat, Reduktionsmittel wie Lithiumaluminiumhydrid und verschiedene Nukleophile für Substitutionsreaktionen. Reaktionsbedingungen wie Temperatur, Lösungsmittel und Katalysatoren spielen eine bedeutende Rolle bei der Bestimmung des Reaktionswegs und der Ausbeute .

Hauptprodukte

Die Hauptprodukte, die aus diesen Reaktionen entstehen, hängen von den verwendeten spezifischen Reagenzien und Bedingungen ab. Beispielsweise kann die Oxidation zu hydroxylierten Derivaten führen, während die Reduktion zu desoxygenierten Verbindungen führen kann .

Wissenschaftliche Forschungsanwendungen

Paroxetin-Hemihydrat hat eine breite Palette wissenschaftlicher Forschungsanwendungen:

Wirkmechanismus

Paroxetin-Hemihydrat übt seine Wirkungen aus, indem es die Wiederaufnahme von Serotonin, einem Neurotransmitter, am präsynaptischen Neuron hemmt. Diese Hemmung erhöht die Konzentration von Serotonin im synaptischen Spalt und verstärkt die serotonerge Neurotransmission. Die Verbindung hemmt auch die Aktivität der G-Protein-gekoppelten Rezeptorkinase 2 (GRK2), was zu ihren therapeutischen Wirkungen beiträgt .

Wissenschaftliche Forschungsanwendungen

BRL29060A hemihydrate has a wide range of scientific research applications:

Wirkmechanismus

BRL29060A hemihydrate exerts its effects by inhibiting the reuptake of serotonin, a neurotransmitter, at the presynaptic neuron. This inhibition increases the concentration of serotonin in the synaptic cleft, enhancing serotonergic neurotransmission. The compound also inhibits G protein-coupled receptor kinase 2 (GRK2) activity, contributing to its therapeutic effects .

Vergleich Mit ähnlichen Verbindungen

Paroxetin-Hemihydrat wird mit anderen selektiven Serotonin-Wiederaufnahmehemmern verglichen, wie zum Beispiel:

  • Fluoxetin
  • Sertralin
  • Citalopram
  • Escitalopram

Obwohl all diese Verbindungen einen ähnlichen Wirkmechanismus teilen, ist Paroxetin-Hemihydrat einzigartig in seinen spezifischen inhibitorischen Wirkungen auf GRK2, was zu seinem besonderen therapeutischen Profil beitragen kann .

Eigenschaften

IUPAC Name

(3R,4S)-3-(1,3-benzodioxol-5-yloxymethyl)-4-(4-fluorophenyl)piperidine
Details Computed by Lexichem TK 2.7.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C19H20FNO3/c20-15-3-1-13(2-4-15)17-7-8-21-10-14(17)11-22-16-5-6-18-19(9-16)24-12-23-18/h1-6,9,14,17,21H,7-8,10-12H2/t14-,17-/m1/s1
Details Computed by InChI 1.0.6 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

AHOUBRCZNHFOSL-RHSMWYFYSA-N
Details Computed by InChI 1.0.6 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4
Details Computed by OEChem 2.3.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

C1CNC[C@@H]([C@H]1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4
Details Computed by OEChem 2.3.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C19H20FNO3
Details Computed by PubChem 2.1 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID90860771
Record name (+)-Paroxetine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90860771
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

329.4 g/mol
Details Computed by PubChem 2.1 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

112058-85-2
Record name Paroxetine, (+)-
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0112058852
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name (+)-Paroxetine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90860771
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name PAROXETINE, (+)-
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/58SBH37T77
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods I

Procedure details

Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
O=C1CC(c2ccc(F)cc2)C(COc2ccc3c(c2)OCO3)CN1
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Synthesis routes and methods II

Procedure details

Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
O=C([O-])Nc1ccccc1
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Synthesis routes and methods III

Procedure details

A solution of lithium aluminium hydride in tetrahydrofuran (1.0M solution, 2 ml, 2.0 mmol) was added over ten minutes to a well stirred solution of 4-(4-fluorophenyl)-3-[(3,4-methylenedioxyphenyl)oxymethyl]piperidine-6-one (0.41 g, 0.96 mmol) in tetrahydrofuran (7 ml), maintaining the temperature below 25° C. The reaction solution was stirred for 2 hours and then quenched first of all with water (0.16 ml), then with 15% aqueous sodium hydroxide solution (0.1 ml), and finally with water again (0.4 ml). The reaction mixture was stirred for 0.5 hours to complete the precipitation, diluted with dichloromethane (30 ml) and filtered. The filtrate was evaporated in vacuo to give the title product with a trans/cis ratio=72:28. Yield 90%.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
2 mL
Type
solvent
Reaction Step One
Name
4-(4-fluorophenyl)-3-[(3,4-methylenedioxyphenyl)oxymethyl]piperidine-6-one
Quantity
0.41 g
Type
reactant
Reaction Step Two
Quantity
7 mL
Type
solvent
Reaction Step Two
Yield
90%

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 2
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 3
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 4
Reactant of Route 4
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 5
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 6
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE

Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten

Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.