molecular formula C19H20FNO3 B3026791 (3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE CAS No. 112058-85-2

(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE

Número de catálogo: B3026791
Número CAS: 112058-85-2
Peso molecular: 329.4 g/mol
Clave InChI: AHOUBRCZNHFOSL-RHSMWYFYSA-N
Atención: Solo para uso de investigación. No para uso humano o veterinario.
En Stock
  • Haga clic en CONSULTA RÁPIDA para recibir una cotización de nuestro equipo de expertos.
  • Con productos de calidad a un precio COMPETITIVO, puede centrarse más en su investigación.

Métodos De Preparación

Rutas sintéticas y condiciones de reacción

La síntesis de paroxetina hemihidrato implica múltiples pasos, comenzando con la estructura química básica de la paroxetina. El proceso incluye la formación de la sal de clorhidrato y la posterior cristalización para obtener la forma hemihidratada. Las condiciones de reacción específicas, como la temperatura, el pH y la elección del solvente, son cruciales para garantizar la pureza y el rendimiento del producto final .

Métodos de producción industrial

La producción industrial de paroxetina hemihidrato sigue rutas sintéticas similares, pero a mayor escala. El proceso está optimizado para la eficiencia y la rentabilidad, a menudo involucrando sistemas automatizados y estrictas medidas de control de calidad para mantener la consistencia y la pureza .

Análisis De Reacciones Químicas

Tipos de reacciones

La paroxetina hemihidrato se somete a diversas reacciones químicas, que incluyen:

Reactivos y condiciones comunes

Los reactivos comunes utilizados en estas reacciones incluyen agentes oxidantes como el permanganato de potasio, agentes reductores como el hidruro de litio y aluminio, y varios nucleófilos para reacciones de sustitución. Las condiciones de reacción como la temperatura, el solvente y los catalizadores juegan un papel significativo en la determinación de la vía de reacción y el rendimiento .

Productos principales

Los productos principales formados a partir de estas reacciones dependen de los reactivos y condiciones específicos utilizados. Por ejemplo, la oxidación puede producir derivados hidroxilados, mientras que la reducción puede producir compuestos desoxigenados .

Aplicaciones Científicas De Investigación

La paroxetina hemihidrato tiene una amplia gama de aplicaciones de investigación científica:

Mecanismo De Acción

La paroxetina hemihidrato ejerce sus efectos inhibiendo la recaptación de serotonina, un neurotransmisor, en la neurona presináptica. Esta inhibición aumenta la concentración de serotonina en la hendidura sináptica, mejorando la neurotransmisión serotoninérgica. El compuesto también inhibe la actividad de la cinasa 2 del receptor acoplado a proteína G (GRK2), lo que contribuye a sus efectos terapéuticos .

Comparación Con Compuestos Similares

La paroxetina hemihidrato se compara con otros inhibidores selectivos de la recaptación de serotonina como:

  • Fluoxetina
  • Sertralina
  • Citalopram
  • Escitalopram

Si bien todos estos compuestos comparten un mecanismo de acción similar, la paroxetina hemihidrato es única en sus efectos inhibitorios específicos sobre GRK2, lo que puede contribuir a su perfil terapéutico distintivo .

Propiedades

IUPAC Name

(3R,4S)-3-(1,3-benzodioxol-5-yloxymethyl)-4-(4-fluorophenyl)piperidine
Details Computed by Lexichem TK 2.7.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C19H20FNO3/c20-15-3-1-13(2-4-15)17-7-8-21-10-14(17)11-22-16-5-6-18-19(9-16)24-12-23-18/h1-6,9,14,17,21H,7-8,10-12H2/t14-,17-/m1/s1
Details Computed by InChI 1.0.6 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

AHOUBRCZNHFOSL-RHSMWYFYSA-N
Details Computed by InChI 1.0.6 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1CNCC(C1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4
Details Computed by OEChem 2.3.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

C1CNC[C@@H]([C@H]1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4
Details Computed by OEChem 2.3.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C19H20FNO3
Details Computed by PubChem 2.1 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID90860771
Record name (+)-Paroxetine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90860771
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

329.4 g/mol
Details Computed by PubChem 2.1 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

112058-85-2
Record name Paroxetine, (+)-
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0112058852
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name (+)-Paroxetine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90860771
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name PAROXETINE, (+)-
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/58SBH37T77
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods I

Procedure details

Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
O=C1CC(c2ccc(F)cc2)C(COc2ccc3c(c2)OCO3)CN1
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Synthesis routes and methods II

Procedure details

Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
O=C([O-])Nc1ccccc1
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Synthesis routes and methods III

Procedure details

A solution of lithium aluminium hydride in tetrahydrofuran (1.0M solution, 2 ml, 2.0 mmol) was added over ten minutes to a well stirred solution of 4-(4-fluorophenyl)-3-[(3,4-methylenedioxyphenyl)oxymethyl]piperidine-6-one (0.41 g, 0.96 mmol) in tetrahydrofuran (7 ml), maintaining the temperature below 25° C. The reaction solution was stirred for 2 hours and then quenched first of all with water (0.16 ml), then with 15% aqueous sodium hydroxide solution (0.1 ml), and finally with water again (0.4 ml). The reaction mixture was stirred for 0.5 hours to complete the precipitation, diluted with dichloromethane (30 ml) and filtered. The filtrate was evaporated in vacuo to give the title product with a trans/cis ratio=72:28. Yield 90%.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
2 mL
Type
solvent
Reaction Step One
Name
4-(4-fluorophenyl)-3-[(3,4-methylenedioxyphenyl)oxymethyl]piperidine-6-one
Quantity
0.41 g
Type
reactant
Reaction Step Two
Quantity
7 mL
Type
solvent
Reaction Step Two
Yield
90%

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 2
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 3
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 4
Reactant of Route 4
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 5
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE
Reactant of Route 6
(3R,4S)-3-[(2H-1,3-BENZODIOXOL-5-YLOXY)METHYL]-4-(4-FLUOROPHENYL)PIPERIDINE

Descargo de responsabilidad e información sobre productos de investigación in vitro

Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.