3-(4-ニトロ-1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン
概要
説明
3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione is a chemical compound with the molecular formula C13H11N3O5 and a molecular weight of 289.25 g/mol . This compound is primarily used as an intermediate in the synthesis of Lenalidomide, a drug used to treat multiple myeloma and other conditions .
科学的研究の応用
3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione has several scientific research applications:
作用機序
Target of Action
The compound “3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione” is also known as 4-Nitro Lenalidomide . It is an analog and intermediate of Lenalidomide , which is an immunomodulatory agent . The primary targets of Lenalidomide are the Ikaros transcription factors IKAROS family zinc finger 1 (IKZF1) and IKZF3 .
Mode of Action
Lenalidomide acts as a ligand of ubiquitin E3 ligase cereblon . It induces the enzyme to degrade the Ikaros transcription factors IKZF1 and IKZF3 . The degradation of these transcription factors disrupts the transcriptional program, leading to changes in the cell.
Biochemical Pathways
The biochemical pathways affected by Lenalidomide involve the ubiquitin-proteasome system . This system is responsible for protein degradation within the cell. By inducing the degradation of IKZF1 and IKZF3, Lenalidomide disrupts the normal functioning of these proteins, affecting the downstream effects related to their roles in transcription regulation .
Result of Action
The result of the action of “3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione” would be similar to that of Lenalidomide, given that it is an analog of Lenalidomide . Lenalidomide has pleiotropic antitumor effects and is used in the treatment of multiple myeloma . Therefore, it can be inferred that the molecular and cellular effects of this compound’s action would be related to its antitumor properties.
Action Environment
The action environment of “3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione” would be influenced by various factors. For instance, the compound should be stored under an inert atmosphere at 2-8°C . This suggests that temperature and atmospheric conditions could influence the compound’s action, efficacy, and stability.
準備方法
The synthesis of 3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione involves several steps. One common method includes the reaction of methyl 2-(bromomethyl)-3-nitrobenzoate with 3-aminopiperidine-2,6-dione hydrochloride in the presence of triethylamine and dimethyl sulfoxide . The reaction mixture is heated to 50-55°C, and the product is purified to obtain the desired compound .
Industrial production methods often involve solvent recrystallization, desolvation, vapor diffusion, and rapid precipitation techniques to obtain polymorphs of the compound .
化学反応の分析
3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione undergoes various chemical reactions, including:
Oxidation: The nitro group can be reduced to an amino group under specific conditions.
Reduction: The compound can be reduced to form 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione.
Substitution: The compound can undergo nucleophilic substitution reactions, where the nitro group is replaced by other functional groups.
Common reagents used in these reactions include reducing agents like hydrogen gas and catalysts such as palladium on carbon . The major products formed from these reactions include 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione and other substituted derivatives .
類似化合物との比較
3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione is similar to other compounds such as:
Lenalidomide: Both compounds share a similar structure and mechanism of action.
Thalidomide: Another analog with immunomodulatory and anti-cancer properties.
Pomalidomide: A derivative with enhanced anti-cancer activity.
The uniqueness of 3-(4-Nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione lies in its specific structural modifications, which confer distinct pharmacological properties and potential therapeutic applications .
特性
IUPAC Name |
3-(7-nitro-3-oxo-1H-isoindol-2-yl)piperidine-2,6-dione | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C13H11N3O5/c17-11-5-4-10(12(18)14-11)15-6-8-7(13(15)19)2-1-3-9(8)16(20)21/h1-3,10H,4-6H2,(H,14,17,18) | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
JKPJLYIGKKDZDT-UHFFFAOYSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
C1CC(=O)NC(=O)C1N2CC3=C(C2=O)C=CC=C3[N+](=O)[O-] | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C13H11N3O5 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID40467017 | |
Record name | 3-(4-Nitro-1-oxo-1,3-dihydro-2H-isoindol-2-yl)piperidine-2,6-dione | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID40467017 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
289.24 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
CAS No. |
827026-45-9 | |
Record name | 4-Nitro lenalidomide | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0827026459 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | 3-(4-Nitro-1-oxo-1,3-dihydro-2H-isoindol-2-yl)piperidine-2,6-dione | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID40467017 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | 4-NITRO LENALIDOMIDE | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/5CBC4TCM54 | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Synthesis routes and methods I
Procedure details
Synthesis routes and methods II
Procedure details
Synthesis routes and methods III
Procedure details
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
試験管内研究製品の免責事項と情報
BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。