molecular formula C17H19N3O3S B000731 Omeprazol CAS No. 73590-58-6

Omeprazol

Katalognummer: B000731
CAS-Nummer: 73590-58-6
Molekulargewicht: 345.4 g/mol
InChI-Schlüssel: SUBDBMMJDZJVOS-UHFFFAOYSA-N
Achtung: Nur für Forschungszwecke. Nicht für den menschlichen oder tierärztlichen Gebrauch.
Auf Lager
  • Klicken Sie auf QUICK INQUIRY, um ein Angebot von unserem Expertenteam zu erhalten.
  • Mit qualitativ hochwertigen Produkten zu einem WETTBEWERBSFÄHIGEN Preis können Sie sich mehr auf Ihre Forschung konzentrieren.

Wirkmechanismus

Target of Action

Omeprazole is a proton pump inhibitor (PPI) . Its primary target is the H+/K+ ATPase pump on gastric secretory cells . This pump is responsible for the final step in the production of gastric acid in the stomach .

Mode of Action

Omeprazole works by inhibiting the H+/K+ ATPase pump , thereby reducing the secretion of gastric acid . It forms a covalent bond with the sulfhydryl group of the cysteine residues on the pump, leading to the inhibition of acid secretion . This results in an increase in gastric pH, providing relief from acid-related disorders .

Biochemical Pathways

Omeprazole affects several biochemical pathways. It inhibits gastric acid secretion, which is part of the larger digestive function of the stomach . Omeprazole has also been found to modulate autophagy in pancreatic cancer cells . Furthermore, it has been shown to bind to a wide range of proteins, forming highly stable complexes .

Pharmacokinetics

Omeprazole shows concentration-dependent elimination kinetics and its oral bioavailability increases with the dose and during repeated administration . It is completely metabolized in the liver, primarily by CYP2C19 and CYP3A4 . The two major plasma metabolites are the sulphone and hydroxyomeprazole, neither of which contributes to the antisecretory activity . About 80% of a given dose is excreted in the urine, and the remainder via the bile .

Result of Action

The inhibition of gastric acid secretion by omeprazole leads to a decrease in gastric acidity. This provides relief from conditions such as gastroesophageal reflux disease (GERD), peptic ulcer disease, and other diseases characterized by the oversecretion of gastric acid . In addition, omeprazole promotes the healing of tissue damage and ulcers caused by gastric acid and H. pylori infection .

Action Environment

The action of omeprazole can be influenced by environmental factors. For instance, a study on fish showed that inhibition of gastric acid secretion with omeprazole affected the fish’s specific dynamic action and growth rate . This suggests that the environment and the physiological state of the organism can influence the action and efficacy of omeprazole .

Biochemische Analyse

Biochemical Properties

Omeprazole’s therapeutic mechanism of action involves the formation of a disulfide linkage to cysteine residues in the H+/K+ ATPase pump on gastric secretory cells . This covalent linkage between the sole sulfur group of Omeprazole and selected cysteine residues of the pump protein results in inhibition of acid secretion in the stomach .

Cellular Effects

Omeprazole has been shown to have a wide range of effects on various types of cells. It has been found to bind to multiple proteins and is capable of forming highly stable complexes that are not dependent on disulfide linkages between the drug and protein targets .

Molecular Mechanism

The molecular mechanism of Omeprazole involves the formation of a covalent bond with cysteine residues in the H+/K+ ATPase pump, resulting in the inhibition of acid secretion . This binding is not fully inhibited by cysteine alkylation and occurs at neutral pH .

Temporal Effects in Laboratory Settings

In a study where Omeprazole and its stable isotope D3–Omeprazole were administered to mice, several new metabolites of Omeprazole were identified in both brain and plasma samples . A total of seventeen metabolites were observed, and the observed metabolites were different from each administration route or each matrix (brain or plasma) .

Dosage Effects in Animal Models

The study mentioned above administered Omeprazole and its stable isotope D3–Omeprazole concomitantly in a dose level of 50 mg/kg (1:1 ratio of Omeprazole and D3–Omeprazole mixture) to mice . The metabolite production varied according to the route of administration in the mouse plasma and brain .

Metabolic Pathways

Omeprazole is involved in various metabolic pathways. In the study mentioned above, several new metabolites of Omeprazole were identified in both brain and plasma samples .

Transport and Distribution

The study mentioned above found that the observed metabolites of Omeprazole were different from each administration route or each matrix (brain or plasma) .

Subcellular Localization

The study mentioned above found that several new metabolites of Omeprazole were identified in both brain and plasma samples .

Vergleich Mit ähnlichen Verbindungen

While all these compounds share a similar mechanism of action, omeprazole is unique in its specific chemical structure and pharmacokinetic properties . For instance, esomeprazole is the S-isomer of omeprazole and is considered to have a more consistent pharmacokinetic profile . Pantoprazole and lansoprazole differ in their chemical structures and are used for slightly different clinical indications .

Conclusion

Omeprazole is a widely used proton pump inhibitor with significant therapeutic benefits for acid-related disorders. Its synthesis involves complex chemical reactions, and it undergoes various transformations to form active metabolites. Omeprazole’s mechanism of action and its applications in scientific research make it a valuable compound in both medicine and industry. Compared to other proton pump inhibitors, omeprazole stands out due to its unique chemical properties and clinical efficacy.

Eigenschaften

IUPAC Name

6-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1H-benzimidazole
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C17H19N3O3S/c1-10-8-18-15(11(2)16(10)23-4)9-24(21)17-19-13-6-5-12(22-3)7-14(13)20-17/h5-8H,9H2,1-4H3,(H,19,20)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

SUBDBMMJDZJVOS-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC1=CN=C(C(=C1OC)C)CS(=O)C2=NC3=C(N2)C=C(C=C3)OC
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C17H19N3O3S
Record name omeprazole
Source Wikipedia
URL https://en.wikipedia.org/wiki/Omeprazole
Description Chemical information link to Wikipedia.
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID6021080
Record name Omeprazole
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6021080
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

345.4 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Omeprazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001913
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

35.4 [ug/mL] (The mean of the results at pH 7.4), Freely soluble in ethanol and methanol, and slightly soluble in acetone and isopropanol and very slightly soluble in water., In water, 82.3 mg/L at 25 °C /Estimated/, 0.5 mg/mL
Record name SID56422106
Source Burnham Center for Chemical Genomics
URL https://pubchem.ncbi.nlm.nih.gov/bioassay/1996#section=Data-Table
Description Aqueous solubility in buffer at pH 7.4
Record name Omeprazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00338
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name OMEPRAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Omeprazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001913
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Vapor Pressure

9.2X10-13 mm Hg at 25 °C /Estimated/
Record name OMEPRAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Mechanism of Action

Hydrochloric acid (HCl) secretion into the gastric lumen is a process regulated mainly by the H(+)/K(+)-ATPase of the proton pump, expressed in high quantities by the parietal cells of the stomach. ATPase is an enzyme on the parietal cell membrane that facilitates hydrogen and potassium exchange through the cell, which normally results in the extrusion of potassium and formation of HCl (gastric acid). Omeprazole is a member of a class of antisecretory compounds, the substituted _benzimidazoles_, that stop gastric acid secretion by selective inhibition of the _H+/K+ ATPase_ enzyme system. Proton-pump inhibitors such as omeprazole bind covalently to cysteine residues via disulfide bridges on the alpha subunit of the _H+/K+ ATPase_ pump, inhibiting gastric acid secretion for up to 36 hours. This antisecretory effect is dose-related and leads to the inhibition of both basal and stimulated acid secretion, regardless of the stimulus. **Mechanism of H. pylori eradication** Peptic ulcer disease (PUD) is frequently associated with _Helicobacter pylori_ bacterial infection (NSAIDs). The treatment of H. pylori infection may include the addition of omeprazole or other proton pump inhibitors as part of the treatment regimen,. _H. pylori_ replicates most effectively at a neutral pH. Acid inhibition in H. pylori eradication therapy, including proton-pump inhibitors such as omeprazole, raises gastric pH, discouraging the growth of H.pylori. It is generally believed that proton pump inhibitors inhibit the _urease_ enzyme, which increases the pathogenesis of H. pylori in gastric-acid related conditions., Omeprazole is a selective and irreversible proton pump inhibitor. Omeprazole suppresses gastric acid secretion by specific inhibition of the hydrogen-potassium adenosinetriphosphatase (H+, K+-ATPase) enzyme system found at the secretory surface of parietal cells. It inhibits the final transport of hydrogen ions (via exchange with potassium ions) into the gastric lumen. Since the H+/K+ ATPase enzyme system is regarded as the acid (proton) pump of the gastric mucosa, omeprazole is known as a gastric acid pump inhibitor. Omeprazole inhibits both basal and stimulated acid secretion irrespective of the stimulus., After oral administration, the onset of the antisecretory effect of omeprazole occurs within one hour, with the maximum effect occurring within two hours. Inhibition of secretion is about 50% of maximum at 24 hours and the duration of inhibition lasts up to 72 hours. The antisecretory effect thus lasts far longer than would be expected from the very short (less than one hour) plasma half-life, apparently due to prolonged binding to the parietal H + /K + ATPase enzyme. When the drug is discontinued, secretory activity returns gradually, over 3 to 5 days. The inhibitory effect of omeprazole on acid secretion increases with repeated once-daily dosing, reaching a plateau after four days.
Record name Omeprazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00338
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name OMEPRAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

Crystals from acetonitrile, White to off-white crystalline powder

CAS No.

73590-58-6
Record name Omeprazole
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=73590-58-6
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Omeprazole [USAN:USP:INN:BAN:JAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0073590586
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Omeprazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00338
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name omeprazole
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759192
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name omeprazole
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=751450
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Omeprazole
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6021080
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 6-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.122.967
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name OMEPRAZOLE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/KG60484QX9
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name OMEPRAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Omeprazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001913
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

156 °C
Record name Omeprazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00338
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name OMEPRAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Omeprazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001913
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

To a 50 mL beaker was added about 1 g of (5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole to 30 mL of dimethylformamide (DMF). Additional (5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole was added to the resulting solution until a suspension of the material was formed. The solution was stirred for approximately 10 minutes, and then filtered through a 0.45 μm Poly(tetrafluoroethylene) (PTFE) or Nylon filter. The resulting saturated solution was placed in a shallow petri dish, covered and stored under refrigerated conditions (approximately 5° C.) with a humidity range of about 0 to 50 percent until crystals formed (between 4-6 days). The identity of the title compound is confirmed by single crystal x-ray diffraction and Raman spectroscopy, and shown to contain between about 96 and 98 percent (w/w) of the 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole and between about 2 and 4 percent (w/w) of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole.
Name
(5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole
Quantity
1 g
Type
reactant
Reaction Step One
Quantity
30 mL
Type
solvent
Reaction Step One
Name
(5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two

Synthesis routes and methods II

Procedure details

Approximately 850 mL of methanol was placed in a 1 liter glass bottle with a screw cap. The solution was saturated by dissolving approximately 10.5 g of (5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole, and the resulting solution was stirred. Once the solution was saturated, an additional 17 g of (5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl-methyl]sulfinyl]-1H-benzimidazole was added to the saturated solution to create a suspension. The cap was sealed and the saturated suspension was allowed to stir and equilibrate for about four days.
[Compound]
Name
glass
Quantity
1 L
Type
reactant
Reaction Step One
Name
(5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole
Quantity
10.5 g
Type
reactant
Reaction Step Two
[Compound]
Name
(5)6-methoxy
Quantity
17 g
Type
reactant
Reaction Step Three

Synthesis routes and methods III

Procedure details

To a 50 mL beaker was added about 1 g of (5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole to 30 mL of dimethylformamide (DMF) containing 1 mL of ammonium hydroxide. Additional (5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole was added to the resulting solution until a suspension of the material was formed. The solution was stirred for approximately 10 minutes, and then filtered through a 0.45 μm Poly(tetrafluoroethylene) (PTFE) or Nylon filter. The resulting saturated solution was placed in a shallow petri dish, covered and stored under ambient conditions (approximately 25° C.) and a humidity range of 0 to 50 percent until crystals formed (between 1-4 days). The identity of the title compound is confirmed by single crystal x-ray diffraction and/or Raman spectroscopy. The resulting material was shown to contain between about 96 and 98 percent (w/w) of the 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole and between about 2 and 4 percent (w/w) of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole.
Name
(5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole
Quantity
1 g
Type
reactant
Reaction Step One
Quantity
30 mL
Type
solvent
Reaction Step One
Quantity
1 mL
Type
reactant
Reaction Step Two
Name
(5)6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Three

Synthesis routes and methods IV

Procedure details

The procedure set forth in Example 2 is repeated except that ethanol is employed as a solvent in place of DMF and the resulting structure is shown by various X-ray crystal diffraction and/or Raman spectroscopy to contain between about 82 and 85 percent (w/w) of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole and between about 15 and 18 percent (w/w) of 5-methoxy 2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Three

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Omeprazole
Reactant of Route 2
Reactant of Route 2
Omeprazole
Reactant of Route 3
Reactant of Route 3
Omeprazole
Reactant of Route 4
Omeprazole
Reactant of Route 5
Reactant of Route 5
Omeprazole
Reactant of Route 6
Reactant of Route 6
Omeprazole
Customer
Q & A

Q1: How does omeprazole inhibit gastric acid secretion?

A1: Omeprazole is a prodrug that requires activation in the acidic environment of the parietal cell canaliculi. [] Once activated, it binds to cysteine residues on the H+/K+ ATPase pump, irreversibly inhibiting its function. [] This inhibition effectively blocks the final step of acid secretion in the stomach. []

Q2: What are the downstream effects of omeprazole's acid suppression?

A2: Omeprazole's potent and prolonged acid suppression leads to various physiological changes, including increased serum gastrin levels. [] Studies have shown that there is no direct correlation between fasting serum gastrin levels and the degree of gastric acid suppression in patients receiving omeprazole. []

Q3: What is the molecular formula and weight of omeprazole?

A3: While the provided texts do not explicitly state the molecular formula and weight of omeprazole, they highlight its single sulfur group, significant in its mechanism of action. []

Q4: How do the enantiomers of omeprazole differ in their pharmacokinetic properties?

A4: Research indicates that artemisinin, an antimalarial drug, induces CYP2C19, an enzyme involved in the metabolism of omeprazole. [] This induction significantly affects the pharmacokinetics of both omeprazole enantiomers. []

Q5: What is the stability of omeprazole in oral suspensions?

A5: Omeprazole-sodium bicarbonate oral suspensions, stored at 4°C in darkness, retain over 96% of their initial omeprazole concentration for up to 28 days. [] The viscosity of these refrigerated suspensions remains stable over 7 days. []

Q6: Does omeprazole interact with other drugs?

A6: Yes, omeprazole can interact with various drugs. It has been shown to reduce the formation of the active metabolite of clopidogrel, potentially impacting its efficacy. [] Further research suggests that esomeprazole, the S-enantiomer of omeprazole, may have a more favorable drug interaction profile compared to omeprazole. []

Q7: Does omeprazole act as a catalyst in any biological reactions?

A7: While omeprazole itself is not a catalyst, its mechanism of action involves irreversible binding to the H+/K+ ATPase, ultimately inhibiting the catalytic activity of this enzyme. []

A7: The provided research papers do not delve into the computational chemistry and modeling of omeprazole.

Q8: How does the structure of omeprazole contribute to its target specificity?

A9: While specific SAR studies are not discussed in the provided texts, omeprazole's structure, particularly its sulfur group, is essential for its activation and subsequent binding to the H+/K+ ATPase. [, ]

Q9: What are the formulation strategies to improve the stability or bioavailability of omeprazole?

A10: The use of enteric coating in omeprazole formulations protects the drug from degradation in the acidic environment of the stomach, ensuring its release and absorption in the small intestine. [, ]

Q10: How is omeprazole metabolized in the body?

A11: Omeprazole is primarily metabolized by the cytochrome P450 (CYP) system in the liver, specifically by the CYP2C19 isoenzyme. [, , ] Genetic polymorphisms in CYP2C19 can significantly influence omeprazole's pharmacokinetics and therapeutic efficacy. [, , ]

Q11: What is the duration of action of a single dose of omeprazole?

A12: A single dose of 20 mg of omeprazole can significantly suppress maximal acid output (MAO) for over 24 hours. [] The duration of acid suppression can vary depending on the dose and individual patient factors. []

Q12: Does omeprazole exhibit gender-specific pharmacokinetic differences?

A13: Research suggests that there are gender-based pharmacokinetic differences in omeprazole metabolism. Studies have observed a significant increase in the Cmax, AUC, and elimination half-life of omeprazole in females compared to males. []

Q13: What is the efficacy of omeprazole in treating duodenal ulcers?

A14: Omeprazole has been shown to be effective in healing duodenal ulcers, often demonstrating superior healing rates compared to H2 receptor antagonists like ranitidine and cimetidine. [, , ] The optimal dosage and duration of omeprazole treatment for duodenal ulcers may vary depending on individual patient factors. []

Q14: What is the role of omeprazole in Helicobacter pylori eradication?

A15: While omeprazole alone is not sufficient to eradicate Helicobacter pylori infection, it plays a crucial role in combination therapies. [, ] Studies suggest that higher doses of omeprazole (80 mg b.d.) combined with amoxicillin are more effective in achieving H. pylori eradication than lower doses. []

Q15: Is omeprazole effective in preventing stress ulcers?

A16: Studies suggest that both omeprazole and cimetidine can be effective in preventing stress ulcers, with omeprazole potentially demonstrating superior efficacy compared to cimetidine. []

Q16: Are there any known resistance mechanisms to omeprazole?

A16: The provided research does not focus on specific resistance mechanisms to omeprazole.

Q17: What is the safety profile of long-term omeprazole treatment?

A18: While omeprazole is generally well-tolerated, long-term treatment, especially at high doses, has been associated with potential adverse effects. [, ]

Q18: Are there any specific safety concerns regarding omeprazole use in children?

A19: Research indicates that high doses of omeprazole can be used to treat eosinophilic esophagitis (EoE) in children, but close monitoring for potential adverse effects is necessary. []

Q19: Are there any specific drug delivery systems designed for omeprazole?

A20: The provided texts do not discuss specific drug delivery systems for omeprazole beyond the use of enteric coatings in oral formulations. [, ]

Q20: What analytical methods are used to quantify omeprazole and its metabolites in biological samples?

A22: High-performance liquid chromatography (HPLC) with UV detection is a commonly used method for quantifying omeprazole and its metabolites in biological samples. [, , ]

A20: The provided research papers do not address the environmental impact and degradation of omeprazole.

Q21: How does the dissolution rate of omeprazole formulations impact its bioavailability?

A24: While the provided texts do not extensively cover dissolution rate, they emphasize the significance of enteric coatings in protecting omeprazole from degradation in the stomach, thereby ensuring its optimal dissolution and absorption in the intestine. [, ]

A21: Specific details about the validation of analytical methods for omeprazole are not provided in the research papers.

A21: The provided texts do not delve into the immunogenicity and immunological responses associated with omeprazole.

Q22: Does omeprazole interact with any drug transporters?

A28: Research indicates that omeprazole may interact with P-glycoprotein, a drug transporter, potentially impacting the absorption and bioavailability of co-administered drugs. []

Q23: Can omeprazole affect the activity of drug-metabolizing enzymes?

A29: Yes, omeprazole has been shown to inhibit the activity of CYP2C19, a key enzyme involved in the metabolism of various drugs. [, , , ] This inhibition can lead to increased plasma concentrations of co-administered drugs metabolized by CYP2C19, potentially increasing the risk of adverse effects. [, , , ]

A23: The provided texts do not specifically address the biocompatibility and biodegradability of omeprazole.

Q24: Are there alternative treatments to omeprazole for acid-related disorders?

A31: Yes, alternative treatments to omeprazole include other PPIs such as lansoprazole, esomeprazole, pantoprazole, and rabeprazole, as well as H2 receptor antagonists like ranitidine and famotidine. [, , , , , ]

Q25: How does the efficacy of esomeprazole compare to omeprazole?

A32: Esomeprazole, the S-enantiomer of omeprazole, has demonstrated comparable or superior efficacy to omeprazole in some studies, particularly at higher doses. [, ]

A25: The provided texts do not cover aspects of recycling and waste management related to omeprazole.

A25: Specific research infrastructure and resources dedicated to omeprazole research are not mentioned in the provided papers.

Q26: What is the historical context of omeprazole's development and use?

A35: Omeprazole represents a significant milestone in the treatment of acid-related disorders. It was the first PPI introduced into clinical practice and revolutionized the management of conditions like peptic ulcer disease and GERD. []

A36: The research presented highlights the interdisciplinary nature of omeprazole research, encompassing fields like pharmacology, gastroenterology, biochemistry, and pharmaceutics. [, , , , , ]

Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten

Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.