Omeprazol
Übersicht
Beschreibung
Omeprazole is a proton pump inhibitor used to treat various conditions related to excessive stomach acid production, such as gastroesophageal reflux disease (GERD), peptic ulcer disease, and Zollinger-Ellison syndrome . It works by reducing the amount of acid produced in the stomach, providing relief from symptoms and promoting healing of the affected tissues .
Wirkmechanismus
Target of Action
Omeprazole is a proton pump inhibitor (PPI) . Its primary target is the H+/K+ ATPase pump on gastric secretory cells . This pump is responsible for the final step in the production of gastric acid in the stomach .
Mode of Action
Omeprazole works by inhibiting the H+/K+ ATPase pump , thereby reducing the secretion of gastric acid . It forms a covalent bond with the sulfhydryl group of the cysteine residues on the pump, leading to the inhibition of acid secretion . This results in an increase in gastric pH, providing relief from acid-related disorders .
Biochemical Pathways
Omeprazole affects several biochemical pathways. It inhibits gastric acid secretion, which is part of the larger digestive function of the stomach . Omeprazole has also been found to modulate autophagy in pancreatic cancer cells . Furthermore, it has been shown to bind to a wide range of proteins, forming highly stable complexes .
Pharmacokinetics
Omeprazole shows concentration-dependent elimination kinetics and its oral bioavailability increases with the dose and during repeated administration . It is completely metabolized in the liver, primarily by CYP2C19 and CYP3A4 . The two major plasma metabolites are the sulphone and hydroxyomeprazole, neither of which contributes to the antisecretory activity . About 80% of a given dose is excreted in the urine, and the remainder via the bile .
Result of Action
The inhibition of gastric acid secretion by omeprazole leads to a decrease in gastric acidity. This provides relief from conditions such as gastroesophageal reflux disease (GERD), peptic ulcer disease, and other diseases characterized by the oversecretion of gastric acid . In addition, omeprazole promotes the healing of tissue damage and ulcers caused by gastric acid and H. pylori infection .
Action Environment
The action of omeprazole can be influenced by environmental factors. For instance, a study on fish showed that inhibition of gastric acid secretion with omeprazole affected the fish’s specific dynamic action and growth rate . This suggests that the environment and the physiological state of the organism can influence the action and efficacy of omeprazole .
Wissenschaftliche Forschungsanwendungen
Omeprazole has a wide range of scientific research applications. In chemistry, it is used as a model compound to study the behavior of proton pump inhibitors and their interactions with various reagents . In biology and medicine, omeprazole is extensively studied for its therapeutic effects on acid-related disorders and its potential role in preventing upper gastrointestinal bleeding in high-risk patients . Additionally, omeprazole is used in the pharmaceutical industry to develop new formulations and improve the bioavailability of proton pump inhibitors .
Biochemische Analyse
Biochemical Properties
Omeprazole’s therapeutic mechanism of action involves the formation of a disulfide linkage to cysteine residues in the H+/K+ ATPase pump on gastric secretory cells . This covalent linkage between the sole sulfur group of Omeprazole and selected cysteine residues of the pump protein results in inhibition of acid secretion in the stomach .
Cellular Effects
Omeprazole has been shown to have a wide range of effects on various types of cells. It has been found to bind to multiple proteins and is capable of forming highly stable complexes that are not dependent on disulfide linkages between the drug and protein targets .
Molecular Mechanism
The molecular mechanism of Omeprazole involves the formation of a covalent bond with cysteine residues in the H+/K+ ATPase pump, resulting in the inhibition of acid secretion . This binding is not fully inhibited by cysteine alkylation and occurs at neutral pH .
Temporal Effects in Laboratory Settings
In a study where Omeprazole and its stable isotope D3–Omeprazole were administered to mice, several new metabolites of Omeprazole were identified in both brain and plasma samples . A total of seventeen metabolites were observed, and the observed metabolites were different from each administration route or each matrix (brain or plasma) .
Dosage Effects in Animal Models
The study mentioned above administered Omeprazole and its stable isotope D3–Omeprazole concomitantly in a dose level of 50 mg/kg (1:1 ratio of Omeprazole and D3–Omeprazole mixture) to mice . The metabolite production varied according to the route of administration in the mouse plasma and brain .
Metabolic Pathways
Omeprazole is involved in various metabolic pathways. In the study mentioned above, several new metabolites of Omeprazole were identified in both brain and plasma samples .
Transport and Distribution
The study mentioned above found that the observed metabolites of Omeprazole were different from each administration route or each matrix (brain or plasma) .
Subcellular Localization
The study mentioned above found that several new metabolites of Omeprazole were identified in both brain and plasma samples .
Vorbereitungsmethoden
Synthetic Routes and Reaction Conditions: Omeprazole is synthesized through a multi-step process. One common method involves the reaction of 5-methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methylthio]-1H-benzimidazole with peroxyacetic acid in a two-phase water and chlorinated organic solvent medium under alkaline conditions . The reaction mixture is then separated into water and organic phases, and omeprazole is isolated from the organic phase .
Industrial Production Methods: In industrial settings, omeprazole is produced using similar synthetic routes but on a larger scale. The process involves the use of sodium sulfite and sodium hydroxide in an aqueous solution, followed by the addition of acetic acid and omeprazole seed crystals . The mixture is stirred, centrifuged, washed, and dried to obtain the final product .
Analyse Chemischer Reaktionen
Types of Reactions: Omeprazole undergoes various chemical reactions, including oxidation, reduction, and substitution. For example, it can be oxidized to form hydroxyomeprazole and the corresponding carboxylic acid .
Common Reagents and Conditions: Common reagents used in the reactions involving omeprazole include peroxyacetic acid for oxidation and sodium hydroxide for maintaining alkaline conditions . The reactions are typically carried out in organic solvents such as chlorinated solvents .
Major Products Formed: The major products formed from the reactions of omeprazole include hydroxyomeprazole and its carboxylic acid derivative .
Vergleich Mit ähnlichen Verbindungen
While all these compounds share a similar mechanism of action, omeprazole is unique in its specific chemical structure and pharmacokinetic properties . For instance, esomeprazole is the S-isomer of omeprazole and is considered to have a more consistent pharmacokinetic profile . Pantoprazole and lansoprazole differ in their chemical structures and are used for slightly different clinical indications .
Conclusion
Omeprazole is a widely used proton pump inhibitor with significant therapeutic benefits for acid-related disorders. Its synthesis involves complex chemical reactions, and it undergoes various transformations to form active metabolites. Omeprazole’s mechanism of action and its applications in scientific research make it a valuable compound in both medicine and industry. Compared to other proton pump inhibitors, omeprazole stands out due to its unique chemical properties and clinical efficacy.
Eigenschaften
IUPAC Name |
6-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1H-benzimidazole | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C17H19N3O3S/c1-10-8-18-15(11(2)16(10)23-4)9-24(21)17-19-13-6-5-12(22-3)7-14(13)20-17/h5-8H,9H2,1-4H3,(H,19,20) | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
SUBDBMMJDZJVOS-UHFFFAOYSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CC1=CN=C(C(=C1OC)C)CS(=O)C2=NC3=C(N2)C=C(C=C3)OC | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C17H19N3O3S | |
Record name | omeprazole | |
Source | Wikipedia | |
URL | https://en.wikipedia.org/wiki/Omeprazole | |
Description | Chemical information link to Wikipedia. | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID6021080 | |
Record name | Omeprazole | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID6021080 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
345.4 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Solid | |
Record name | Omeprazole | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001913 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Solubility |
35.4 [ug/mL] (The mean of the results at pH 7.4), Freely soluble in ethanol and methanol, and slightly soluble in acetone and isopropanol and very slightly soluble in water., In water, 82.3 mg/L at 25 °C /Estimated/, 0.5 mg/mL | |
Record name | SID56422106 | |
Source | Burnham Center for Chemical Genomics | |
URL | https://pubchem.ncbi.nlm.nih.gov/bioassay/1996#section=Data-Table | |
Description | Aqueous solubility in buffer at pH 7.4 | |
Record name | Omeprazole | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00338 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | OMEPRAZOLE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Omeprazole | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001913 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Vapor Pressure |
9.2X10-13 mm Hg at 25 °C /Estimated/ | |
Record name | OMEPRAZOLE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Mechanism of Action |
Hydrochloric acid (HCl) secretion into the gastric lumen is a process regulated mainly by the H(+)/K(+)-ATPase of the proton pump, expressed in high quantities by the parietal cells of the stomach. ATPase is an enzyme on the parietal cell membrane that facilitates hydrogen and potassium exchange through the cell, which normally results in the extrusion of potassium and formation of HCl (gastric acid). Omeprazole is a member of a class of antisecretory compounds, the substituted _benzimidazoles_, that stop gastric acid secretion by selective inhibition of the _H+/K+ ATPase_ enzyme system. Proton-pump inhibitors such as omeprazole bind covalently to cysteine residues via disulfide bridges on the alpha subunit of the _H+/K+ ATPase_ pump, inhibiting gastric acid secretion for up to 36 hours. This antisecretory effect is dose-related and leads to the inhibition of both basal and stimulated acid secretion, regardless of the stimulus. **Mechanism of H. pylori eradication** Peptic ulcer disease (PUD) is frequently associated with _Helicobacter pylori_ bacterial infection (NSAIDs). The treatment of H. pylori infection may include the addition of omeprazole or other proton pump inhibitors as part of the treatment regimen,. _H. pylori_ replicates most effectively at a neutral pH. Acid inhibition in H. pylori eradication therapy, including proton-pump inhibitors such as omeprazole, raises gastric pH, discouraging the growth of H.pylori. It is generally believed that proton pump inhibitors inhibit the _urease_ enzyme, which increases the pathogenesis of H. pylori in gastric-acid related conditions., Omeprazole is a selective and irreversible proton pump inhibitor. Omeprazole suppresses gastric acid secretion by specific inhibition of the hydrogen-potassium adenosinetriphosphatase (H+, K+-ATPase) enzyme system found at the secretory surface of parietal cells. It inhibits the final transport of hydrogen ions (via exchange with potassium ions) into the gastric lumen. Since the H+/K+ ATPase enzyme system is regarded as the acid (proton) pump of the gastric mucosa, omeprazole is known as a gastric acid pump inhibitor. Omeprazole inhibits both basal and stimulated acid secretion irrespective of the stimulus., After oral administration, the onset of the antisecretory effect of omeprazole occurs within one hour, with the maximum effect occurring within two hours. Inhibition of secretion is about 50% of maximum at 24 hours and the duration of inhibition lasts up to 72 hours. The antisecretory effect thus lasts far longer than would be expected from the very short (less than one hour) plasma half-life, apparently due to prolonged binding to the parietal H + /K + ATPase enzyme. When the drug is discontinued, secretory activity returns gradually, over 3 to 5 days. The inhibitory effect of omeprazole on acid secretion increases with repeated once-daily dosing, reaching a plateau after four days. | |
Record name | Omeprazole | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00338 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | OMEPRAZOLE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Color/Form |
Crystals from acetonitrile, White to off-white crystalline powder | |
CAS No. |
73590-58-6 | |
Record name | Omeprazole | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=73590-58-6 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Omeprazole [USAN:USP:INN:BAN:JAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0073590586 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Omeprazole | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00338 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | omeprazole | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759192 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | omeprazole | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=751450 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | Omeprazole | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID6021080 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | 6-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.122.967 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | OMEPRAZOLE | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/KG60484QX9 | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Record name | OMEPRAZOLE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Omeprazole | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001913 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
156 °C | |
Record name | Omeprazole | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00338 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | OMEPRAZOLE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3575 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Omeprazole | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001913 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Synthesis routes and methods I
Procedure details
Synthesis routes and methods II
Procedure details
Synthesis routes and methods III
Procedure details
Synthesis routes and methods IV
Procedure details
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Q1: How does omeprazole inhibit gastric acid secretion?
A1: Omeprazole is a prodrug that requires activation in the acidic environment of the parietal cell canaliculi. [] Once activated, it binds to cysteine residues on the H+/K+ ATPase pump, irreversibly inhibiting its function. [] This inhibition effectively blocks the final step of acid secretion in the stomach. []
Q2: What are the downstream effects of omeprazole's acid suppression?
A2: Omeprazole's potent and prolonged acid suppression leads to various physiological changes, including increased serum gastrin levels. [] Studies have shown that there is no direct correlation between fasting serum gastrin levels and the degree of gastric acid suppression in patients receiving omeprazole. []
Q3: What is the molecular formula and weight of omeprazole?
A3: While the provided texts do not explicitly state the molecular formula and weight of omeprazole, they highlight its single sulfur group, significant in its mechanism of action. []
Q4: How do the enantiomers of omeprazole differ in their pharmacokinetic properties?
A4: Research indicates that artemisinin, an antimalarial drug, induces CYP2C19, an enzyme involved in the metabolism of omeprazole. [] This induction significantly affects the pharmacokinetics of both omeprazole enantiomers. []
Q5: What is the stability of omeprazole in oral suspensions?
A5: Omeprazole-sodium bicarbonate oral suspensions, stored at 4°C in darkness, retain over 96% of their initial omeprazole concentration for up to 28 days. [] The viscosity of these refrigerated suspensions remains stable over 7 days. []
Q6: Does omeprazole interact with other drugs?
A6: Yes, omeprazole can interact with various drugs. It has been shown to reduce the formation of the active metabolite of clopidogrel, potentially impacting its efficacy. [] Further research suggests that esomeprazole, the S-enantiomer of omeprazole, may have a more favorable drug interaction profile compared to omeprazole. []
Q7: Does omeprazole act as a catalyst in any biological reactions?
A7: While omeprazole itself is not a catalyst, its mechanism of action involves irreversible binding to the H+/K+ ATPase, ultimately inhibiting the catalytic activity of this enzyme. []
A7: The provided research papers do not delve into the computational chemistry and modeling of omeprazole.
Q8: How does the structure of omeprazole contribute to its target specificity?
A9: While specific SAR studies are not discussed in the provided texts, omeprazole's structure, particularly its sulfur group, is essential for its activation and subsequent binding to the H+/K+ ATPase. [, ]
Q9: What are the formulation strategies to improve the stability or bioavailability of omeprazole?
A10: The use of enteric coating in omeprazole formulations protects the drug from degradation in the acidic environment of the stomach, ensuring its release and absorption in the small intestine. [, ]
Q10: How is omeprazole metabolized in the body?
A11: Omeprazole is primarily metabolized by the cytochrome P450 (CYP) system in the liver, specifically by the CYP2C19 isoenzyme. [, , ] Genetic polymorphisms in CYP2C19 can significantly influence omeprazole's pharmacokinetics and therapeutic efficacy. [, , ]
Q11: What is the duration of action of a single dose of omeprazole?
A12: A single dose of 20 mg of omeprazole can significantly suppress maximal acid output (MAO) for over 24 hours. [] The duration of acid suppression can vary depending on the dose and individual patient factors. []
Q12: Does omeprazole exhibit gender-specific pharmacokinetic differences?
A13: Research suggests that there are gender-based pharmacokinetic differences in omeprazole metabolism. Studies have observed a significant increase in the Cmax, AUC, and elimination half-life of omeprazole in females compared to males. []
Q13: What is the efficacy of omeprazole in treating duodenal ulcers?
A14: Omeprazole has been shown to be effective in healing duodenal ulcers, often demonstrating superior healing rates compared to H2 receptor antagonists like ranitidine and cimetidine. [, , ] The optimal dosage and duration of omeprazole treatment for duodenal ulcers may vary depending on individual patient factors. []
Q14: What is the role of omeprazole in Helicobacter pylori eradication?
A15: While omeprazole alone is not sufficient to eradicate Helicobacter pylori infection, it plays a crucial role in combination therapies. [, ] Studies suggest that higher doses of omeprazole (80 mg b.d.) combined with amoxicillin are more effective in achieving H. pylori eradication than lower doses. []
Q15: Is omeprazole effective in preventing stress ulcers?
A16: Studies suggest that both omeprazole and cimetidine can be effective in preventing stress ulcers, with omeprazole potentially demonstrating superior efficacy compared to cimetidine. []
Q16: Are there any known resistance mechanisms to omeprazole?
A16: The provided research does not focus on specific resistance mechanisms to omeprazole.
Q17: What is the safety profile of long-term omeprazole treatment?
A18: While omeprazole is generally well-tolerated, long-term treatment, especially at high doses, has been associated with potential adverse effects. [, ]
Q18: Are there any specific safety concerns regarding omeprazole use in children?
A19: Research indicates that high doses of omeprazole can be used to treat eosinophilic esophagitis (EoE) in children, but close monitoring for potential adverse effects is necessary. []
Q19: Are there any specific drug delivery systems designed for omeprazole?
A20: The provided texts do not discuss specific drug delivery systems for omeprazole beyond the use of enteric coatings in oral formulations. [, ]
Q20: What analytical methods are used to quantify omeprazole and its metabolites in biological samples?
A22: High-performance liquid chromatography (HPLC) with UV detection is a commonly used method for quantifying omeprazole and its metabolites in biological samples. [, , ]
A20: The provided research papers do not address the environmental impact and degradation of omeprazole.
Q21: How does the dissolution rate of omeprazole formulations impact its bioavailability?
A24: While the provided texts do not extensively cover dissolution rate, they emphasize the significance of enteric coatings in protecting omeprazole from degradation in the stomach, thereby ensuring its optimal dissolution and absorption in the intestine. [, ]
A21: Specific details about the validation of analytical methods for omeprazole are not provided in the research papers.
A21: The provided texts do not delve into the immunogenicity and immunological responses associated with omeprazole.
Q22: Does omeprazole interact with any drug transporters?
A28: Research indicates that omeprazole may interact with P-glycoprotein, a drug transporter, potentially impacting the absorption and bioavailability of co-administered drugs. []
Q23: Can omeprazole affect the activity of drug-metabolizing enzymes?
A29: Yes, omeprazole has been shown to inhibit the activity of CYP2C19, a key enzyme involved in the metabolism of various drugs. [, , , ] This inhibition can lead to increased plasma concentrations of co-administered drugs metabolized by CYP2C19, potentially increasing the risk of adverse effects. [, , , ]
A23: The provided texts do not specifically address the biocompatibility and biodegradability of omeprazole.
Q24: Are there alternative treatments to omeprazole for acid-related disorders?
A31: Yes, alternative treatments to omeprazole include other PPIs such as lansoprazole, esomeprazole, pantoprazole, and rabeprazole, as well as H2 receptor antagonists like ranitidine and famotidine. [, , , , , ]
Q25: How does the efficacy of esomeprazole compare to omeprazole?
A32: Esomeprazole, the S-enantiomer of omeprazole, has demonstrated comparable or superior efficacy to omeprazole in some studies, particularly at higher doses. [, ]
A25: The provided texts do not cover aspects of recycling and waste management related to omeprazole.
A25: Specific research infrastructure and resources dedicated to omeprazole research are not mentioned in the provided papers.
Q26: What is the historical context of omeprazole's development and use?
A35: Omeprazole represents a significant milestone in the treatment of acid-related disorders. It was the first PPI introduced into clinical practice and revolutionized the management of conditions like peptic ulcer disease and GERD. []
A36: The research presented highlights the interdisciplinary nature of omeprazole research, encompassing fields like pharmacology, gastroenterology, biochemistry, and pharmaceutics. [, , , , , ]
Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten
Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.