molecular formula C16H25NO2 B015222 Tramadol CAS No. 123154-38-1

Tramadol

Katalognummer: B015222
CAS-Nummer: 123154-38-1
Molekulargewicht: 263.37 g/mol
InChI-Schlüssel: TVYLLZQTGLZFBW-ZBFHGGJFSA-N
Achtung: Nur für Forschungszwecke. Nicht für den menschlichen oder tierärztlichen Gebrauch.
Auf Lager
  • Klicken Sie auf QUICK INQUIRY, um ein Angebot von unserem Expertenteam zu erhalten.
  • Mit qualitativ hochwertigen Produkten zu einem WETTBEWERBSFÄHIGEN Preis können Sie sich mehr auf Ihre Forschung konzentrieren.

Beschreibung

Tramadol ist ein zentral wirkendes Analgetikum, das zur Behandlung von mittelschweren bis starken Schmerzen eingesetzt wird. Es ist ein Opioid-Schmerzmittel und ein Serotonin-Norepinephrin-Wiederaufnahmehemmer. This compound ist in verschiedenen Formen erhältlich, darunter Tabletten, Kapseln und Injektionen. Es wurde erstmals 1977 von der deutschen Pharmafirma Grünenthal GmbH unter dem Markennamen „Tramal“ eingeführt .

Vorbereitungsmethoden

Synthesewege und Reaktionsbedingungen

Die Synthese von Tramadol umfasst mehrere Schritte. Ein gängiges Verfahren beginnt mit der Reaktion von 3-Methoxyphenylmagnesiumbromid mit Cyclohexanon zur Bildung von 1-(3-Methoxyphenyl)cyclohexanol. Dieser Zwischenstoff wird dann mit Dimethylamin umgesetzt, um this compound zu erzeugen .

Industrielle Produktionsverfahren

In industriellen Umgebungen wird Tramadolhydrochlorid häufig in einem Eintopfverfahren hergestellt. Dabei wird ein Gemisch aus (RR,SS)- und (RS,SR)-2-Dimethylaminomethyl-1-(3-Methoxyphenyl)cyclohexanol mit Salzsäure in Gegenwart einer katalytischen Menge Wasser umgesetzt. Dieses Verfahren ist vorteilhaft, da es die Verwendung von krebserregenden Lösungsmitteln vermeidet und den Produktionsprozess vereinfacht .

Chemische Reaktionsanalyse

Arten von Reaktionen

This compound durchläuft verschiedene Arten von chemischen Reaktionen, darunter:

Häufige Reagenzien und Bedingungen

    Oxidation: Häufige Oxidationsmittel sind Kaliumpermanganat und Wasserstoffperoxid.

    Reduktion: Reduktionsmittel wie Lithiumaluminiumhydrid können verwendet werden.

    Substitution: Starke Nukleophile wie Natriumhydrid können Substitutionsreaktionen erleichtern.

Hauptprodukte

Die Hauptprodukte, die aus diesen Reaktionen gebildet werden, sind O-Desmethylthis compound und verschiedene substituierte Derivate, abhängig von den verwendeten Reagenzien und Bedingungen .

Wissenschaftliche Forschungsanwendungen

This compound hat eine breite Palette von wissenschaftlichen Forschungsanwendungen:

Wirkmechanismus

This compound entfaltet seine Wirkung durch mehrere Mechanismen:

Analyse Chemischer Reaktionen

Types of Reactions

Tramadol undergoes several types of chemical reactions, including:

Common Reagents and Conditions

    Oxidation: Common oxidizing agents include potassium permanganate and hydrogen peroxide.

    Reduction: Reducing agents such as lithium aluminum hydride can be used.

    Substitution: Strong nucleophiles like sodium hydride can facilitate substitution reactions.

Major Products

The major products formed from these reactions include O-desmethylthis compound and various substituted derivatives, depending on the reagents and conditions used .

Wissenschaftliche Forschungsanwendungen

Tramadol has a wide range of scientific research applications:

Vergleich Mit ähnlichen Verbindungen

Ähnliche Verbindungen

Einzigartigkeit

Die Einzigartigkeit von this compound liegt in seinem dualen Wirkmechanismus, der die Aktivierung von Opioid-Rezeptoren mit der Hemmung der Monoamin-Wiederaufnahme kombiniert. Dadurch ist es für eine Vielzahl von Schmerztypen wirksam und bietet zusätzliche Vorteile wie anxiolytische und antidepressive Wirkungen .

Eigenschaften

IUPAC Name

(1R,2R)-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexan-1-ol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C16H25NO2/c1-17(2)12-14-7-4-5-10-16(14,18)13-8-6-9-15(11-13)19-3/h6,8-9,11,14,18H,4-5,7,10,12H2,1-3H3/t14-,16+/m1/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

TVYLLZQTGLZFBW-ZBFHGGJFSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

CN(C)C[C@H]1CCCC[C@@]1(C2=CC(=CC=C2)OC)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C16H25NO2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID90858931, DTXSID401167150
Record name Tramadol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90858931
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name (1R,2R)-2-[(Dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID401167150
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

263.37 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Tramadol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014339
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

>39.5 [ug/mL] (The mean of the results at pH 7.4), Soluble, 7.50e-01 g/L
Record name SID26663897
Source Burnham Center for Chemical Genomics
URL https://pubchem.ncbi.nlm.nih.gov/bioassay/1996#section=Data-Table
Description Aqueous solubility in buffer at pH 7.4
Record name Tramadol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00193
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Tramadol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014339
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Tramadol is a centrally acting μ-opioid receptor agonist and SNRI (serotonin/norepinephrine reuptake-inhibitor) that is structurally related to [codeine] and [morphine]. Tramadol binds weakly to κ- and δ-opioid receptors and to the μ-opioid receptor with 6000-fold less affinity than morphine. Tramadol exists as a racemic mixture consisting of two pharmacologically active enantiomers that both contribute to its analgesic property through different mechanisms: (+)-tramadol and its primary metabolite (+)-O-desmethyl-tramadol (M1) are agonists of the μ opioid receptor while (+)-tramadol inhibits serotonin reuptake and (-)-tramadol inhibits norepinephrine reuptake. These pathways are complementary and synergistic, improving tramadol's ability to modulate the perception of and response to pain. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in μ-opioid binding. Tramadol has also been shown to affect a number of pain modulators including alpha2-adrenoreceptors, neurokinin 1 receptors, the voltage-gated sodium channel type II alpha subunit, transient receptor potential cation channel subfamily V member 1 (TRPV1 - also known as the capsaicin receptor), muscarinic receptors (M1 and M3), N-methyl-D-aspartate receptor (also known as the NMDA receptor or glutamate receptor), Adenosine A1 receptors, and nicotinic acetylcholine receptor. In addition to the above neuronal targets, tramadol has a number of effects on inflammatory and immune mediators involved in the pain response. This includes inhibitory effects on cytokines, prostaglandin E2 (PGE2), nuclear factor-κB, and glial cells as well as a change in the polarization state of M1 macrophages., Tramadol is a racemic mixture (R & S) that has a complicated mechanism of action. It has some mu-opioid receptor action, but this effect is 10 times lower than codeine and 6000 timex lower than morphine. Tramadol also inhibits the reuptake of norepinephrine (NE) and serotonin (5 HT) and produces secondary effects on alpha-2 adrenergic receptors in pain pathways. One isomer has greater effect on 5 HT reuptake and greater affinity for mu-opiate receptors. The other isomer is more potent for NE reuptake and less active for inhibiting 5 HT reuptake. Taken together, the effects of of tramadol may be explained through inhibition of 5 HT reuptake, action on alpha2 receptors, and mild activity on opiate mu-receptors., The transient receptor potential vanilloid 1 (TRPV1) and the transient receptor potential ankyrin 1 (TRPA1), which are expressed in sensory neurons, are polymodal nonselective cation channels that sense noxious stimuli. Recent reports showed that these channels play important roles in inflammatory, neuropathic, or cancer pain, suggesting that they may serve as attractive analgesic pharmacological targets. Tramadol is an effective analgesic that is widely used in clinical practice. Reportedly, tramadol and its metabolite (M1) bind to mu-opioid receptors and/or inhibit reuptake of monoamines in the central nervous system, resulting in the activation of the descending inhibitory system. However, the fundamental mechanisms of tramadol in pain control remain unclear. TRPV1 and TRPA1 may be targets of tramadol; however, they have not been studied extensively. We examined whether and how tramadol and M1 act on human embryonic kidney 293 (HEK293) cells expressing human TRPV1 (hTRPV1) or hTRPA1 by using a Ca imaging assay and whole-cell patch-clamp recording. Tramadol and M1 (0.01-10 uM) alone did not increase in intracellular Ca concentration ([Ca]i) in HEK293 cells expressing hTRPV1 or hTRPA1 compared with capsaicin (a TRPV1 agonist) or the allyl isothiocyanate (AITC, a TRPA1 agonist), respectively. Furthermore, in HEK293 cells expressing hTRPV1, pretreatment with tramadol or M1 for 5 minutes did not change the increase in [Ca]i induced by capsaicin. Conversely, pretreatment with tramadol (0.1-10 uM) and M1 (1-10 uM) significantly suppressed the AITC-induced [Ca]i increases in HEK293 cells expressing hTRPA1. In addition, the patch-clamp study showed that pretreatment with tramadol and M1 (10 uM) decreased the inward currents induced by AITC. These data indicate that tramadol and M1 selectively inhibit the function of hTRPA1, but not that of hTRPV1, and that hTRPA1 may play a role in the analgesic effects of these compounds., Tramadol is an effective analgesic substance widely used in medical practice. Its therapeutic action have been mainly attributed to the activation of mu-opioid receptors as well as to the inhibition of neurotransmitter reuptake mechanisms and various voltage- and ligand-gated ion channels of the nociceptive system. As transient receptor potential vanilloid-1 (TRPV1, "the capsaicin receptor") has been shown to function as a central integrator molecule of pain sensation, our aim in the current study was to define the involvement of TRPV1 in the complex mechanism of action of tramadol. To achieve these goals, we used single-cell Ca-imaging as well as fluorescent image plate reader assays on Chinese hamster ovary (CHO) cells heterologously over-expressing TRPV1. We found that (1) tramadol, similar to the well-known TRPV1 agonist, capsaicin, significantly increased [Ca(2+)](i) of TRPV1-CHO cells in a concentration-dependent fashion; (2) its effect was reversibly prevented by the TRPV1 antagonist capsazepine; (3) repeated application of tramadol resulted in marked tachyphylaxis; and (4) tramadol did not modify [Ca(2+)](i) in control (empty vector expressing) CHO cells. Collectively, these findings strongly support the intriguing and novel concept that tramadol acts as an agonist of TRPV1. Considering that activation of TRPV1 on sensory neurons is followed by a local release of vasoactive neuropeptides and a marked desensitization of the afferent fibers (hence termination of pain sensation), our findings may equally explain both the desired analgesic as well as the often-seen, yet "unexpected," local side effects (e.g., initiation of burning pain and erythema) of tramadol., Tramadol has a dual mechanism of action that includes weak agonistic effects at the mu-opioid receptor as well as inhibition of monoamine (serotonin, norepinephrine) re-uptake. Its major (M1) metabolite mono-O:-desmethyltramadol, which is rapidly formed in vivo, has a markedly higher affinity for mu receptors and may thus contribute to the effects of the parent compound. Furthermore, the pharmacological effects of tramadol appear to be related to the different, but complementary and interactive pharmacologies of its enantiomers., Tramadol has been used as an analgesic for several decades. mu-Opioid receptors (muORs) are the major receptors that mediate the analgesic effects of opioids. Although muORs have been thought to be one of the sites of action of tramadol, there has been no report that directly proves whether tramadol is an agonist of muOR or not. In this study, we examined the effects of tramadol and its main active metabolite O-desmethyltramadol (M1), on the function of muORs using Xenopus oocytes expressing cloned human muORs. The effects of tramadol and M1 were evaluated using the Ca(2+)-activated Cl(-) current assay method for G(i/o)-protein-coupled receptors by using a muOR fused to G(qi5) (muOR-G(qi5)) in Xenopus oocytes. DAMGO [(D-Ala(2), N-MePhe(4), Gly(5)-ol)-enkephalin] evoked Cl(-) currents in oocytes expressing muOR-G(qi5) in a concentration-dependent manner. Tramadol and M1 also evoked Cl(-) currents in the oocytes expressing muOR-G(qi5); however, relatively higher concentrations (compared to DMAGO) were necessary to induce such currents. Tramadol and M1 had a direct effect on muORs expressed in Xenopus oocytes. Although the monoamine uptake system and several types of ligand-gated ion channels are thought to be one of the targets for tramadol, tramadol-induced antinociception may be mediated at least in part, by the direct activation of muORs.
Record name Tramadol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00193
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name TRAMADOL
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7047
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

CAS No.

123154-38-1, 27203-92-5
Record name (1R,2R)-2-[(Dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=123154-38-1
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Tramadol
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=27203-92-5
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Tramadol [INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0027203925
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name (+)-trans-Tramadol free base
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0123154381
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Tramadol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00193
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Tramadol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90858931
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name (1R,2R)-2-[(Dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID401167150
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Tramadol
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.043.912
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name TRAMADOL
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/39J1LGJ30J
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name TRAMADOL, (+)-
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/0NG5TTM63P
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name TRAMADOL
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7047
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Tramadol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014339
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

178-181 °C, 180 - 181 °C
Record name Tramadol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00193
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Tramadol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014339
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

3 kg (10 mole) (1RS,2RS)-2-dimethylaminomethyl-1-(3-methoxy-phenyl)-cyclohexanol hydrochloride (1) were suspended in 4800 ml water and treated with 1.6 kg crushed ice. 1300 ml of 36-38% (technical) caustic soda solution were added drop-wise with stirring. The mixture was subsequently extracted with 7000 ml dichloromethane, and was extracted with a further 2000 ml dichloromethane after phase separation. The combined organic phases were dried over sodium sulphate. After removing the solvent by distillation, 2630 g (99% theoretical) of (1RS,2RS)-2-dimethylaminomethyl-1-(3-methoxy-phenyl)-cyclohexanol were obtained as a syrup.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Name
Quantity
4800 mL
Type
solvent
Reaction Step Three

Synthesis routes and methods II

Procedure details

First, tramadol N-oxide was prepared as set forth hereinafter. Tramadol hydrochloride (0.5 mol) was converted to its free base in basified water (pH>9) and then extracted with ether. The ether was evaporated to yield the crystalline hydrate of tramadol. The solid was then heated with steam under a high vacuum to remove as much water as possible to yield 131.5 g of material. The material was dissolved in methanol (500 mL) and 65 g of 30% H2O2 was added. The solution was stirred for 3 hours and then an additional 65 g of the 30% H2O2 was added. The reaction was stirred for 2.5 days at room temperature. Approximately 10 mg of PtO2 on carbon (use of Pt/C is suggested for its ease of removal) was added to the reaction mixture, and very gentle foaming took place. An additional 10 mg of PtO2 was added and the reaction mixture was stirred overnight and then filtered thru a filter aid. The filtrate was concentrated under vacuum while being heated to a temperature of <40° C. The residue was taken up in methylene chloride. Since the methylene chloride solution contained some colloidial platinum, the solution was diluted with ethyl acetate to 1 L and filtered through a nylon filter membrane (0.45μ pore size) to yield a clear colorless filtrate. The filtrate was concentrated to 600 mL, and then ethyl acetate was added continuously to maintain a volume of 800 mL while the solution was heated until a vapor temperature of 74° C. was reached. The solution was then cooled to room temperature. The solid was collected by filtration, washed with ethyl acetate and dried in vacuo to yield 126.6 g of the tramadol N-oxide (mp. 159.5°-160° C.).
Quantity
0.5 mol
Type
reactant
Reaction Step One
Name
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two

Synthesis routes and methods III

Procedure details

Tramadol hydrochloride was heated at 90 V for 3.5 s (methanol/dichloromethane solvent mixture used for coating) using the above-described apparatus to provide tramadol aerosol in 100% purity.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
methanol dichloromethane
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Tramadol
Reactant of Route 2
Reactant of Route 2
Tramadol
Reactant of Route 3
Reactant of Route 3
Tramadol
Reactant of Route 4
Reactant of Route 4
Tramadol
Reactant of Route 5
Reactant of Route 5
Tramadol
Reactant of Route 6
Reactant of Route 6
Tramadol

Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten

Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.