molecular formula C18H26ClN3 B1663885 Chloroquin CAS No. 54-05-7

Chloroquin

Katalognummer: B1663885
CAS-Nummer: 54-05-7
Molekulargewicht: 319.9 g/mol
InChI-Schlüssel: WHTVZRBIWZFKQO-UHFFFAOYSA-N
Achtung: Nur für Forschungszwecke. Nicht für den menschlichen oder tierärztlichen Gebrauch.
Auf Lager
  • Klicken Sie auf QUICK INQUIRY, um ein Angebot von unserem Expertenteam zu erhalten.
  • Mit qualitativ hochwertigen Produkten zu einem WETTBEWERBSFÄHIGEN Preis können Sie sich mehr auf Ihre Forschung konzentrieren.

Wirkmechanismus

Target of Action

Chloroquine primarily targets the heme polymerase in malarial trophozoites . This enzyme plays a crucial role in the survival of the malaria parasite, Plasmodium species, by converting toxic heme to non-toxic hemazoin .

Mode of Action

Chloroquine inhibits the action of heme polymerase, preventing the conversion of heme to hemazoin . As a result, Plasmodium species continue to accumulate toxic heme, which eventually leads to the death of the parasite . Chloroquine enters the red blood cell by simple diffusion, inhibiting the parasite cell and digestive vacuole . Once inside the cell, Chloroquine becomes protonated due to the acidic environment of the digestive vacuole, preventing it from leaving .

Biochemical Pathways

Chloroquine interferes with the autophagy pathway by preventing the fusion of autophagosomes with lysosomes . This inhibition of autophagy leads to an accumulation of cellular waste and damaged organelles, which can have various downstream effects, including impaired cellular function and cell death .

Pharmacokinetics

Chloroquine is 60% bound to plasma proteins and is equally cleared by the kidney and liver . Following administration, chloroquine is rapidly dealkylated via cytochrome P450 enzymes into the pharmacologically active desethylchloroquine and bisdesethylchloroquine . It is absorbed very rapidly following subcutaneous or intramuscular injection .

Result of Action

The inhibition of heme polymerase by chloroquine leads to the accumulation of toxic heme within the Plasmodium species, resulting in the death of the parasite . In addition, the inhibition of autophagy can lead to impaired cellular function and cell death .

Action Environment

Environmental factors can influence the action, efficacy, and stability of chloroquine. For instance, chloroquine has been found in aquatic environments due to its persistence . It enters into river systems through various pathways such as improper disposal of unused medication, excretion from medically treated individuals, and wastewater discharges from hospitals and pharmaceutical industries . This contamination raises environmental concerns due to its impact on aquatic ecosystems and potential threats to human health through drinking water supplies .

Wissenschaftliche Forschungsanwendungen

Chloroquin hat eine breite Palette an Anwendungen in der wissenschaftlichen Forschung:

Wirkmechanismus

This compound entfaltet seine Wirkung über verschiedene Mechanismen:

Biochemische Analyse

Biochemical Properties

Chloroquine interacts with various enzymes, proteins, and other biomolecules. High-performance liquid chromatography (HPLC) coupled to UV detectors is the most employed method to quantify Chloroquine in pharmaceutical products and biological samples .

Cellular Effects

Chloroquine has exhibited a broad spectrum of action against various fungus, bacteria, and viruses . It has been identified to have severe gastrointestinal, neurological, cardiac, and ocular side effects, which are commonly related to Chloroquine dose and treatment time .

Molecular Mechanism

Chloroquine and its analog, hydroxychloroquine, have similar chemical structure and pharmacokinetics properties . Both drugs cross cell membranes well . Hydroxychloroquine is more polar, less lipophilic, and has more difficulty diffusing across cell membranes .

Temporal Effects in Laboratory Settings

The main chromatographic conditions used to identify and quantify Chloroquine from tablets and injections, degradation products, and metabolites are presented and discussed .

Dosage Effects in Animal Models

The occurrence and intensity of side effects of Chloroquine are commonly related to its dose and treatment time .

Metabolic Pathways

Chloroquine is involved in various metabolic pathways. The main chromatographic conditions used to identify and quantify Chloroquine from tablets and injections, degradation products, and metabolites are presented and discussed .

Transport and Distribution

Both Chloroquine and hydroxychloroquine cross cell membranes well . Hydroxychloroquine is more polar, less lipophilic, and has more difficulty diffusing across cell membranes .

Vorbereitungsmethoden

Synthesewege und Reaktionsbedingungen

Die Synthese von Chloroquin beinhaltet die Kondensationsreaktion von 4,7-Dichlorchinolin mit 2-Amino-5-diethylaminopentan . Die Reaktion verläuft in folgenden Schritten:

Industrielle Produktionsmethoden

Die industrielle Produktion von this compound erfolgt nach ähnlichen Synthesewegen, jedoch in größerem Maßstab. Der Prozess umfasst:

Analyse Chemischer Reaktionen

Arten von Reaktionen

Chloroquin unterliegt verschiedenen chemischen Reaktionen, darunter:

Häufige Reagenzien und Bedingungen

Hauptprodukte

Vergleich Mit ähnlichen Verbindungen

Chloroquin wird mit anderen ähnlichen Verbindungen verglichen, wobei seine Einzigartigkeit hervorgehoben wird:

    Hydroxythis compound: Ähnlich in Struktur und Funktion zu this compound, aber im Allgemeinen als weniger toxisch angesehen.

    Chinin: Eine natürliche Verbindung, die zur Behandlung von Malaria eingesetzt wird.

    Mefloquin: Ein weiteres synthetisches Antimalariamittel mit einem anderen Wirkmechanismus.

    Artemisinin: Eine natürliche Verbindung mit starker antimalarieller Wirkung.

Die einzigartigen Eigenschaften von this compound, wie z. B. seine Fähigkeit, die Häm-Polymerase zu hemmen und die Immunantwort zu modulieren, machen es zu einer wertvollen Verbindung sowohl in der medizinischen als auch in der wissenschaftlichen Forschung.

Eigenschaften

IUPAC Name

4-N-(7-chloroquinolin-4-yl)-1-N,1-N-diethylpentane-1,4-diamine
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C18H26ClN3/c1-4-22(5-2)12-6-7-14(3)21-17-10-11-20-18-13-15(19)8-9-16(17)18/h8-11,13-14H,4-7,12H2,1-3H3,(H,20,21)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

WHTVZRBIWZFKQO-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCN(CC)CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C18H26ClN3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID2040446
Record name Chloroquine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID2040446
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

319.9 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Chloroquine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014746
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

Bitter colorless crystals, dimorphic. Freely soluble in water, less sol in neutral or alkaline pH. Stable to heat in soln pH4 to 6.5. Practically in soluble in alcohol, benzene and chloroform /Diphosphate/, WHITE CRYSTALLINE POWDER; ODORLESS; BITTER TASTE; FREELY SOL IN WATER;PRACTICALLY INSOL IN ALCOHOL, CHLOROFORM, ETHER; AQ SOLN HAS PH OF ABOUT 4.5; PKA1= 7; PKA2= 9.2 /PHOSPHATE/, VERY SLIGHTLY SOL IN WATER; SOL IN DIL ACIDS, CHLOROFORM, ETHER, Insoluble in alcohol, benzene, chloroform, ether., 1.75e-02 g/L
Record name CHLOROQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3029
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Chloroquine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014746
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Chloroquine inhibits the action of heme polymerase in malarial trophozoites, preventing the conversion of heme to hemazoin. _Plasmodium_ species continue to accumulate toxic heme, killing the parasite. Chloroquine passively diffuses through cell membranes and into endosomes, lysosomes, and Golgi vesicles; where it becomes protonated, trapping the chloroquine in the organelle and raising the surrounding pH. The raised pH in endosomes, prevent virus particles from utilizing their activity for fusion and entry into the cell. Chloroquine does not affect the level of ACE2 expression on cell surfaces, but inhibits terminal glycosylation of ACE2, the receptor that SARS-CoV and SARS-CoV-2 target for cell entry. ACE2 that is not in the glycosylated state may less efficiently interact with the SARS-CoV-2 spike protein, further inhibiting viral entry., The exact mechanism of antimalarial activity of chloroquine has not been determined. The 4-aminoquinoline derivatives appear to bind to nucleoproteins and interfere with protein synthesis in susceptible organisms; the drugs intercalate readily into double-stranded DNA and inhibit both DNA and RNA polymerase. In addition, studies using chloroquine indicate that the drug apparently concentrates in parasite digestive vacuoles, increases the pH of the vacuoles, and interferes with the parasite's ability to metabolize and utilize erythrocyte hemoglobin. Plasmodial forms that do not have digestive vacuoles and do not utilize hemoglobin, such as exoerythrocytic forms, are not affected by chloroquine., The 4-aminoquinoline derivatives, including chloroquine, also have anti-inflammatory activity; however, the mechanism(s) of action of the drugs in the treatment of rheumatoid arthritis and lupus erythematosus has not been determined. Chloroquine reportedly antagonizes histamine in vitro, has antiserotonin effects, and inhibits prostaglandin effects in mammalian cells presumably by inhibiting conversion of arachidonic acid to prostaglandin F2. In vitro studies indicate that chloroquine also inhibits chemotaxis of polymorphonuclear leukocytes, macrophages, and eosinophils., Antiprotozoal-Malaria: /Mechanism of action/ may be based on ability of chloroquine to bind and alter the properties of DNA. Chloroquine also is taken up into the acidic food vacuoles of the parasite in the erythrocyte. It increases the pH of the acid vesicles, interfering with vesicle functions and possibly inhibiting phospholipid metabolism. In suppressive treatment, chloroquine inhibits the erythrocytic stage of development of plasmodia. In acute attacks of malaria, chloroquine interrupts erythrocytic schizogony of the parasite. its ability to concentrate in parasitized erythrocytes may account for its selective toxicity against the erythrocytic stages of plasmodial infection., Antirheumatic-Chloroquine is though to act as a mild immunosuppressant, inhibiting the production of rheumatoid factor and acute phase reactants. It also accumulates in white blood cells, stabilizing lysosomal membranes and inhibiting the activity of many enzymes, including collagenase and the proteases that cause cartilage breakdown.
Record name Chloroquine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00608
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name CHLOROQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3029
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

WHITE TO SLIGHTLY YELLOW, CRYSTALLINE POWDER, Colorless crystals

CAS No.

54-05-7
Record name Chloroquine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=54-05-7
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Chloroquine [USP:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000054057
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Chloroquine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00608
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name chloroquine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=187208
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Chloroquine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID2040446
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Chloroquine
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.000.175
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name CHLOROQUINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/886U3H6UFF
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name CHLOROQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3029
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Chloroquine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014746
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

87-89.5, 87 °C, 289 °C
Record name Chloroquine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00608
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name CHLOROQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3029
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Chloroquine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014746
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

17.904 millimols, i.e. a yield of 98.05% relative to the 7-chloro-1,2,3,4-tetrahydroquinolin-4-one converted, and a yield of 96.86% relative to the 1-diethylamino-4-amino-pentane converted, and
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Yield
98.05%

Synthesis routes and methods II

Procedure details

3.665 millimols, i.e. a yield of 90% relative to the 7-chloro-1,2,3,4-tetrahydroquinolinone converted, and a yield of 91.2% relative to the 1-diethylamino-4-aminopentane converted, and
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Yield
90%

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Chloroquine
Reactant of Route 2
Reactant of Route 2
Chloroquine
Reactant of Route 3
Reactant of Route 3
Chloroquine
Reactant of Route 4
Reactant of Route 4
Chloroquine
Reactant of Route 5
Reactant of Route 5
Reactant of Route 5
Chloroquine
Reactant of Route 6
Reactant of Route 6
Chloroquine

Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten

Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.