molecular formula C14H18N2O2 B1678012 Nefiracetam CAS No. 77191-36-7

Nefiracetam

Cat. No.: B1678012
CAS No.: 77191-36-7
M. Wt: 246.30 g/mol
InChI Key: NGHTXZCKLWZPGK-UHFFFAOYSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

Nefiracetam is a nootropic compound belonging to the racetam family. It was first developed in Tokyo in the 1990s by Daiichi Pharmaceutical. This compound is known for its cognitive-enhancing properties, including improvements in memory, mood, and motivation. It is a derivative of piracetam, with a similar chemical structure but with a phenyl group and two methyl groups added to the amine, which increases its potency compared to other racetams .

Mechanism of Action

Target of Action

Nefiracetam is a nootropic drug that primarily targets neurotransmitter systems in the brain, including the GABAergic, cholinergic, and monoaminergic neuronal systems . It also shows high affinity for the GABA A receptor .

Mode of Action

This compound modulates neurotransmission by influencing calcium channels and acetylcholine receptors . It enhances both GABAergic and cholinergic signalling . It’s also known to interact with nicotinic acetylcholine receptors , which play a crucial role in cognitive processes . This compound is presumed to be an agonist at the GABA A receptor .

Biochemical Pathways

This compound’s cytoprotective actions are mediated by enhancement of GABAergic, cholinergic, and monoaminergic neuronal systems . It modulates the GABAA receptor-channel, playing a significant role in reducing neuronal excitability throughout the nervous system . It also interacts with nicotinic acetylcholine receptors, crucial for cognitive processes .

Pharmacokinetics

It’s known that this compound is administered orally and has an elimination half-life of 3-5 hours .

Result of Action

This compound’s action results in a variety of molecular and cellular effects. It’s known for its cholinergic and gabaergic actions and modulates neurotransmission . It’s also known to enhance cognitive performance and information processing speed . Long-term usage is both neuroprotective and nootropic in research animals .

Action Environment

This suggests that improved memory-associated synaptic plasticity may be the fundamental mechanism underlying the disease-modifying action of drugs such as this compound .

Biochemical Analysis

Biochemical Properties

Nefiracetam interacts with various enzymes, proteins, and other biomolecules. It shows high affinity for the GABA A receptor, where it is presumed to be an agonist . It enhances both GABAergic and cholinergic signalling . It also exhibits antiamnesic effects against a number of memory impairing substances .

Cellular Effects

This compound has significant effects on various types of cells and cellular processes. It influences cell function by enhancing signalling of acetylcholine and glutamate at the synapse and then prolonging the calcium in the activated neuron . It also modulates the GABAA receptor-channel, playing a significant role in reducing neuronal excitability throughout the nervous system .

Molecular Mechanism

This compound exerts its effects at the molecular level through several mechanisms. It prolongs the opening of calcium channels, which enhances signalling of a receptor independent of the synapse . It also augments signalling through cholinergic receptors, which then releases most excitatory neurotransmitters from the presynaptic level .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of this compound change over time. It does not appear to significantly affect memory formation acutely, but it can increase memory formation when taken daily over a prolonged period of time . It also shows a higher rate of neurogenesis with prolonged supplementation .

Dosage Effects in Animal Models

In animal models, the effects of this compound vary with different dosages. Animal studies using acute doses tend to note most benefits in the 3-10mg/kg range . This range has been repeatedly shown to enhance memory formation when taken daily over a prolonged period of time .

Metabolic Pathways

This compound is involved in various metabolic pathways. It is extensively metabolised, and its major metabolites in humans are 5-hydroxy-nefiracetam, 4-hydroxy-nefiracetam and N-[(2,6-dimethylphenylcarbamoyl)methyl]-succinamic acid .

Preparation Methods

Synthetic Routes and Reaction Conditions: Nefiracetam can be synthesized through a multi-step process involving the reaction of 2,6-dimethylphenylamine with ethyl chloroacetate to form an intermediate, which is then cyclized to produce this compound. The reaction conditions typically involve the use of solvents such as ethanol and catalysts like sodium ethoxide .

Industrial Production Methods: Industrial production of this compound involves similar synthetic routes but on a larger scale. The process is optimized for higher yields and purity, often involving additional purification steps such as recrystallization and chromatography to ensure the final product meets pharmaceutical standards .

Chemical Reactions Analysis

Types of Reactions: Nefiracetam undergoes various chemical reactions, including:

Common Reagents and Conditions:

Major Products Formed:

Scientific Research Applications

Nefiracetam has a wide range of scientific research applications:

Comparison with Similar Compounds

Nefiracetam is compared with other racetams such as:

    Piracetam: The first racetam, known for its cognitive-enhancing effects but less potent than this compound.

    Aniracetam: Similar to this compound but with additional anxiolytic properties.

    Oxiracetam: Known for its stimulating effects and cognitive enhancement.

    Phenylpiracetam: More potent than piracetam, with additional stimulant properties.

    Pramiracetam: Highly potent, primarily used for memory enhancement

This compound stands out due to its unique combination of cognitive enhancement, neuroprotection, and mood improvement, making it a versatile compound in the racetam family.

Properties

IUPAC Name

N-(2,6-dimethylphenyl)-2-(2-oxopyrrolidin-1-yl)acetamide
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C14H18N2O2/c1-10-5-3-6-11(2)14(10)15-12(17)9-16-8-4-7-13(16)18/h3,5-6H,4,7-9H2,1-2H3,(H,15,17)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

NGHTXZCKLWZPGK-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC1=C(C(=CC=C1)C)NC(=O)CN2CCCC2=O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C14H18N2O2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID2020923
Record name Nefiracetam
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID2020923
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

246.30 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

77191-36-7
Record name Nefiracetam
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=77191-36-7
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Nefiracetam [INN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0077191367
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Nefiracetam
Source DrugBank
URL https://www.drugbank.ca/drugs/DB13082
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Nefiracetam
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759830
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Nefiracetam
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID2020923
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name N-(2,6-dimethylphenyl)-2-(2-oxopyrrolidin-1-yl)acetamide
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/information-on-chemicals
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name NEFIRACETAM
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/1JK12GX30N
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods I

Procedure details

Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Synthesis routes and methods II

Procedure details

In 300 ml of toluene was suspended 9.2 g of 60% sodium hydride in a nitrogen stream, and 21.3 g of 2pyrrolidinone was slowly added dropwise to the suspension at an inner temperature controlled at 40° C. or lower. After stirring the mixture for 2 hours, 19.7 g of 2-chloro-N(2,6-dimethylphenyl)acetamide was added thereto, and the mixture was allowed to react at 60° to 70° C. for 2 hours. To the reaction mixture was added 50 ml of hot water of about 70° to 85° C., followed by allowing to cool with stirring. The precipitated crystals in the aqueous layer were collected by filtration and dried under reduced pressure to obtain 22.2 g (90%) of the titled compound.
Quantity
9.2 g
Type
reactant
Reaction Step One
Quantity
21.3 g
Type
reactant
Reaction Step Two
Quantity
19.7 g
Type
reactant
Reaction Step Three
Name
Quantity
50 mL
Type
reactant
Reaction Step Four
Quantity
300 mL
Type
solvent
Reaction Step Five
Yield
90%

Synthesis routes and methods III

Procedure details

In 30 ml of t-butyl methyl ether was suspended 897 mg of sodium amide in a nitrogen stream, and 2.13 g of 2-pyrrolidinone was slowly added thereto dropwise, followed by refluxing for 2 hours. After allowing to cool, 1.97 g of 2-chloro-N-(2,6-dimethylphenyl)acetamide was added thereto, followed by refluxing for 2 hours. To the reaction mixture was added 50 ml of hot water of about 70° to 85° C., and the mixture was allowed to cool with stirring. The thus formed crystals in the aqueous layer were collected by filtration and dried under reduced pressure to obtain 2.19 g (89%) of the titled compound.
Quantity
897 mg
Type
reactant
Reaction Step One
Quantity
2.13 g
Type
reactant
Reaction Step Two
Quantity
1.97 g
Type
reactant
Reaction Step Three
Name
Quantity
50 mL
Type
reactant
Reaction Step Four
Quantity
30 mL
Type
solvent
Reaction Step Five
Yield
89%

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Nefiracetam
Reactant of Route 2
Reactant of Route 2
Nefiracetam
Reactant of Route 3
Reactant of Route 3
Nefiracetam
Reactant of Route 4
Reactant of Route 4
Nefiracetam
Reactant of Route 5
Reactant of Route 5
Nefiracetam
Reactant of Route 6
Reactant of Route 6
Nefiracetam

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.