Pyrantel
Overview
Description
Pyrantel is a pyrimidine-derivative anthelmintic agent used to treat various parasitic worm infections, including ascariasis, hookworm infections, enterobiasis (pinworm infection), trichostrongyliasis, and trichinellosis . It is administered orally and works by paralyzing the worms, which are then expelled from the body through natural processes .
Preparation Methods
Synthetic Routes and Reaction Conditions: Pyrantel is synthesized through a series of chemical reactions involving pyrimidine derivatives. The synthesis typically involves the reaction of 1-methyl-2-(2-thienyl)vinyl-5,6-dihydro-4H-pyrimidine with various reagents under controlled conditions .
Industrial Production Methods: Industrial production of this compound often involves the use of high-performance liquid chromatography (HPLC) for the purification and analysis of the compound. The process includes the use of acetonitrile, acetic acid, water, and diethylamine as solvents and reagents .
Chemical Reactions Analysis
Types of Reactions: Pyrantel undergoes various chemical reactions, including oxidation, reduction, and substitution reactions. These reactions are essential for modifying the compound’s structure and enhancing its efficacy .
Common Reagents and Conditions: Common reagents used in the reactions involving this compound include acetonitrile, acetic acid, water, and diethylamine. The reactions are typically carried out under controlled temperature and pressure conditions to ensure optimal yields .
Major Products Formed: The major products formed from the reactions involving this compound include its pamoate salt, which is used in various pharmaceutical formulations .
Scientific Research Applications
Pyrantel has a wide range of scientific research applications, including its use in chemistry, biology, medicine, and industry. In medicine, it is used to treat parasitic worm infections in humans and animals . In biology, it is used to study the effects of anthelmintic agents on parasitic worms . In chemistry, it is used as a model compound for studying the synthesis and reactions of pyrimidine derivatives . In industry, it is used in the production of veterinary medicines and other pharmaceutical products .
Mechanism of Action
Pyrantel acts as a depolarizing neuromuscular blocking agent, causing sudden contraction followed by paralysis of the helminths. This results in the worms losing their grip on the intestinal wall and being expelled from the body . The compound targets nicotinic cholinergic receptors in the worms, leading to persistent depolarization and spastic paralysis .
Comparison with Similar Compounds
- Mebendazole
- Albendazole
Comparison: Pyrantel is unique in its mechanism of action as a depolarizing neuromuscular blocking agent, whereas mebendazole and albendazole work by inhibiting the polymerization of tubulin in the worms . This compound is also known for its rapid action and effectiveness after a single dose, making it a preferred choice for treating parasitic worm infections .
Properties
IUPAC Name |
1-methyl-2-[(E)-2-thiophen-2-ylethenyl]-5,6-dihydro-4H-pyrimidine | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C11H14N2S/c1-13-8-3-7-12-11(13)6-5-10-4-2-9-14-10/h2,4-6,9H,3,7-8H2,1H3/b6-5+ | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
YSAUAVHXTIETRK-AATRIKPKSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CN1CCCN=C1C=CC2=CC=CS2 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Isomeric SMILES |
CN1CCCN=C1/C=C/C2=CC=CS2 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C11H14N2S | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID5023538 | |
Record name | Pyrantel | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID5023538 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
206.31 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Solubility |
insoluble in water, TASTELESS; PRACTICALLY INSOL IN ALCOHOL OR WATER /PAMOATE/, Tastelss, yellow crystalline powder. Insol in water. /Pamoate/, Insoluble in water, slightly soluble in dimethylformamide, and soluble in dimethyl sulfoxide. | |
Record name | Pyrantel | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB11156 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | PYRANTEL | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3252 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Mechanism of Action |
By promoting the release of acetylcholine, inhibiting cholinesterase, and stimulating ganglionic neurons, pyrantel serves as a depolarizing neuromuscular blocking agent in helminths. This causes extensive depolarization of the helminth muscle membrane, resulting in tension to the helminth's muscles, leading to paralysis and release of their attachment to the host organism intestinal walls. This action is unlike piperazine, which is a hyperpolarizing neuromuscular blocking agent that causes relaxation of the helminth muscles, leading to a subsequent detachment from the intestinal wall. Excretion of the parasites in the feces occurs by normal peristalsis., PYRANTEL & ITS ANALOGS ARE DEPOLARIZING NEUROMUSCULAR BLOCKING AGENTS. THEY INDUCE MARKED, PERSISTENT ACTIVATION OF NICOTINIC RECEPTORS, WHICH RESULTS IN SPASTIC PARALYSIS OF THE WORM. PYRANTEL ALSO INHIBITS CHOLINESTERASES. /PYRANTEL PAMOATE AND ANALOGS/, PYRANTEL ... CAUSES A SLOWLY DEVELOPING CONTRACTURE OF PREPARATIONS OF ASCARIS AT 1% OF THE CONCENTRATION OF ACETYLCHOLINE REQUIRED TO PRODUCE THE SAME EFFECT. IN SINGLE MUSCLE CELLS OF THIS HELMINTH, PYRANTEL CAUSES DEPOLARIZATION & INCREASED SPIKE-DISCHARGE FREQUENCY, ACCOMPANIED BY INCREASE IN TENSION. | |
Record name | Pyrantel | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB11156 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | PYRANTEL | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3252 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Color/Form |
Crystals from methanol, Yellow, crystalline solid | |
CAS No. |
15686-83-6 | |
Record name | Pyrantel | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=15686-83-6 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Pyrantel [INN:BAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0015686836 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Pyrantel | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB11156 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Pyrantel | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID5023538 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | Pyrantel | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.036.143 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | PYRANTEL | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/4QIH0N49E7 | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Record name | PYRANTEL | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3252 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Melting Point |
178-179 °C, White crystals from hot methanol; max absorption (water): 312 nm (log e= 4.27); MP: 148-150 °C /Tartrate/ | |
Record name | PYRANTEL | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3252 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Disclaimer and Information on In-Vitro Research Products
Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.