molecular formula C20H25ClN2O5 B1678800 (R)-Amlodipine CAS No. 103129-81-3

(R)-Amlodipine

Número de catálogo: B1678800
Número CAS: 103129-81-3
Peso molecular: 408.9 g/mol
Clave InChI: HTIQEAQVCYTUBX-QGZVFWFLSA-N
Atención: Solo para uso de investigación. No para uso humano o veterinario.
En Stock
  • Haga clic en CONSULTA RÁPIDA para recibir una cotización de nuestro equipo de expertos.
  • Con productos de calidad a un precio COMPETITIVO, puede centrarse más en su investigación.

Descripción

®-Amlodipine is a chiral calcium channel blocker used primarily in the treatment of hypertension and angina. It is the enantiomer of amlodipine, which means it has a specific three-dimensional arrangement that distinguishes it from its mirror image. This compound works by inhibiting the influx of calcium ions into vascular smooth muscle and cardiac muscle, leading to vasodilation and reduced blood pressure.

Métodos De Preparación

Synthetic Routes and Reaction Conditions

The synthesis of ®-Amlodipine typically involves the resolution of racemic amlodipine or asymmetric synthesis. One common method is the chiral resolution of racemic amlodipine using chiral acids or bases to separate the enantiomers. Another approach is the asymmetric synthesis, which involves the use of chiral catalysts or chiral auxiliaries to produce the desired enantiomer directly.

Industrial Production Methods

In industrial settings, the production of ®-Amlodipine often involves large-scale chiral resolution techniques. These methods are optimized for high yield and purity, ensuring that the final product meets pharmaceutical standards. The use of advanced chromatographic techniques and crystallization methods is common in the industrial production of ®-Amlodipine.

Análisis De Reacciones Químicas

Types of Reactions

®-Amlodipine undergoes several types of chemical reactions, including:

    Oxidation: It can be oxidized under specific conditions to form various metabolites.

    Reduction: Reduction reactions can modify the structure of ®-Amlodipine, potentially altering its pharmacological properties.

    Substitution: Nucleophilic substitution reactions can occur, leading to the formation of different derivatives.

Common Reagents and Conditions

    Oxidation: Common oxidizing agents include potassium permanganate and hydrogen peroxide.

    Reduction: Reducing agents such as lithium aluminum hydride and sodium borohydride are used.

    Substitution: Nucleophiles like amines and thiols can react with ®-Amlodipine under appropriate conditions.

Major Products Formed

The major products formed from these reactions include various metabolites and derivatives that may have different pharmacological activities. These products are often studied to understand the metabolism and potential side effects of ®-Amlodipine.

Aplicaciones Científicas De Investigación

Chemistry

In chemistry, ®-Amlodipine is used as a model compound to study chiral resolution techniques and asymmetric synthesis. Researchers explore new methods to improve the efficiency and selectivity of these processes.

Biology

In biological research, ®-Amlodipine is used to study calcium channel function and the role of calcium ions in cellular processes. It serves as a tool to investigate the mechanisms of calcium channel blockers and their effects on various cell types.

Medicine

Medically, ®-Amlodipine is extensively studied for its therapeutic effects in treating hypertension and angina. Clinical trials and pharmacological studies aim to understand its efficacy, safety, and potential side effects.

Industry

In the pharmaceutical industry, ®-Amlodipine is used as a reference standard for quality control and formulation development. Its production and quality assurance processes are critical for ensuring the availability of safe and effective medications.

Mecanismo De Acción

®-Amlodipine exerts its effects by inhibiting the influx of calcium ions through L-type calcium channels in vascular smooth muscle and cardiac muscle. This inhibition leads to vasodilation, reduced peripheral resistance, and decreased blood pressure. The molecular targets of ®-Amlodipine include the alpha-1 subunit of the L-type calcium channel. By binding to this subunit, ®-Amlodipine stabilizes the channel in its inactive state, preventing calcium entry and subsequent muscle contraction.

Comparación Con Compuestos Similares

Similar Compounds

    Amlodipine: The racemic mixture containing both ®- and (S)-enantiomers.

    Nifedipine: Another calcium channel blocker with a similar mechanism of action.

    Felodipine: A dihydropyridine calcium channel blocker used for similar indications.

Uniqueness

®-Amlodipine is unique due to its specific chiral configuration, which can result in different pharmacokinetic and pharmacodynamic properties compared to its (S)-enantiomer and racemic mixture. Studies have shown that ®-Amlodipine may have a more favorable side effect profile and potentially greater efficacy in certain patient populations.

Conclusion

®-Amlodipine is a valuable compound in the treatment of hypertension and angina, with distinct chemical, biological, and pharmacological properties. Its synthesis, reactions, and applications continue to be areas of active research, contributing to the development of more effective and safer medications.

Propiedades

IUPAC Name

3-O-ethyl 5-O-methyl (4R)-2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C20H25ClN2O5/c1-4-28-20(25)18-15(11-27-10-9-22)23-12(2)16(19(24)26-3)17(18)13-7-5-6-8-14(13)21/h5-8,17,23H,4,9-11,22H2,1-3H3/t17-/m1/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

HTIQEAQVCYTUBX-QGZVFWFLSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCOC(=O)C1=C(NC(=C(C1C2=CC=CC=C2Cl)C(=O)OC)C)COCCN
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

CCOC(=O)C1=C(NC(=C([C@H]1C2=CC=CC=C2Cl)C(=O)OC)C)COCCN
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C20H25ClN2O5
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID90430938
Record name (R)-Amlodipine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90430938
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

408.9 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

103129-81-3
Record name (+)-Amlodipine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=103129-81-3
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Amlodipine, (+)-
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0103129813
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name (R)-Amlodipine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90430938
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name AMLODIPINE, (R)-
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/YUH55G7ZTY
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods I

Procedure details

A mixture of 4-(2-chlorophenyl)-2-(2-hydroxyimino-ethoxymethyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid 3-ethyl 5-methyl ester (IBa, 150 mg), palladium hydroxide on carbon (10 mg) and ammonium formate (224 mg) in methanol (10 mL) was refluxed for 5 h under a nitrogen atmosphere. On cooling to room temperature, the mixture was filtered through a pad of celite. The filtrate was concentrated in vacuo. Purification of the residue by flash chromatography on silica gel (grade 9385, Merck, 230-400 mesh, 60 Å) using a solvent mixture of dichloromethane and methanol (9:1; 100 mL), and dichloromethane, methanol and ammonium hydroxide (90:10:1; 500 mL) as eluent afforded the title compound (IAa 88 mg).
Name
4-(2-chlorophenyl)-2-(2-hydroxyimino-ethoxymethyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid 3-ethyl 5-methyl ester
Quantity
150 mg
Type
reactant
Reaction Step One
Quantity
224 mg
Type
reactant
Reaction Step One
Quantity
10 mL
Type
solvent
Reaction Step One
Quantity
10 mg
Type
catalyst
Reaction Step One

Synthesis routes and methods II

Procedure details

To a stirred solution of 100 gm (0.245 moles) of RS amlodipine in 150 ml DMSO was added a solution of 9.2 gm (0.06 moles, 0.25 eq) of L (+) tartaric acid in 100 ml DMSO. The solid starts separating from clear solution within 5-10 mins. This was stirred for 3 hrs and solid was filtered off, washed with acetone and dried to give 58.6 gm (40.5%) R (+) amlodipine hemi L(+) tartarate mono DMSO solvate. mp. 160-162° C., 96.8% d.e. by chiral HPLC.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
150 mL
Type
solvent
Reaction Step One
Name
Quantity
100 mL
Type
solvent
Reaction Step One

Synthesis routes and methods III

Procedure details

Phthaloyl amlodipine (100 g, 0.18 M) was reacted with monomethyl amine (500 g, 40% solution) in denatured spirit at room temperature for 8 hrs, cooled to 0° C., filtered, washed with distilled water up to neutral pH and dried at 60-65° C. for 8 ills. Yield 58 g.
Quantity
100 g
Type
reactant
Reaction Step One
Quantity
500 g
Type
reactant
Reaction Step One

Synthesis routes and methods IV

Procedure details

Amlodipine besylate (30 g) was slurried into a mixture of dichloromethane/water (1:1, 500 ml) and the rapidly slurred emulsion was basified to pH 11 with aqueous sodium hydroxide (5M). The resulting organic layer was separated and the remaining aqueous layer extracted with dichloromethane (100 ml). The combined extracts were washed with water (150 ml) dried (MgSO4) and evaporated in vacuo to afford an off-white solid (20.3 g).
Quantity
30 g
Type
reactant
Reaction Step One
Name
dichloromethane water
Quantity
500 mL
Type
solvent
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two

Synthesis routes and methods V

Procedure details

To a slight suspension of racemic amlodipine besylate (100.37 g, 0.177 mol) [prepared by the method described in European Patent No. 0244944] in methylene chloride (250 mL, 2.5 mL/g) and water (250 mL, 2.5 mL/g) was added 11 M sodium hydroxide (24 mL) to achieve pH 13-14. The mixture was stirred for ten minutes during which time it became a solution. The layers were separated and the organic layer washed with water (1×250 mL) and gravity filtered through a magnesium sulphate (25 g) bed. The magnesium sulphate was washed with methylene chloride (40 mL) and to the combined filtrates was added dimethyl sulphoxide (360 mL). The methylene chloride was removed on a rotary evaporator (45 minutes on a water aspirator followed by 15 minutes under high vacuum).
Quantity
100.37 g
Type
reactant
Reaction Step One
Name
Quantity
250 mL
Type
reactant
Reaction Step Two
Quantity
24 mL
Type
reactant
Reaction Step Two
Quantity
250 mL
Type
solvent
Reaction Step Two

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
(R)-Amlodipine
Reactant of Route 2
(R)-Amlodipine
Reactant of Route 3
(R)-Amlodipine
Reactant of Route 4
Reactant of Route 4
(R)-Amlodipine
Reactant of Route 5
(R)-Amlodipine
Reactant of Route 6
(R)-Amlodipine
Customer
Q & A

Q1: What is the primary mechanism of action of (R)-amlodipine?

A1: Unlike its (S)-enantiomer, this compound does not exhibit significant calcium channel blocking activity. Instead, research suggests its primary mechanism involves inhibiting smooth muscle cell migration. [, , ]

Q2: What are the downstream effects of this compound's inhibition of smooth muscle cell migration?

A2: Inhibiting smooth muscle cell migration is particularly relevant in conditions like atherosclerosis and restenosis, where the excessive proliferation and migration of these cells contribute to disease progression. [, ] By hindering this process, this compound might offer therapeutic benefits in these areas.

Q3: What is the molecular formula and weight of this compound?

A3: this compound shares the same molecular formula and weight as its racemic mixture and (S)-enantiomer. The molecular formula is C20H25ClN2O5, and the molecular weight is 408.88 g/mol.

Q4: Is there spectroscopic data available for this compound?

A4: While specific spectroscopic data for this compound might be limited due to its existence as an enantiomer within the racemic mixture, studies utilize techniques like nuclear magnetic resonance (NMR) to characterize the solvates of this compound salts. For instance, one study reports the 1H NMR spectrum of the dimethylformamide solvate of this compound L-hemitartrate. []

Q5: What are the challenges in formulating this compound for pharmaceutical use?

A5: Like many chiral drugs, formulating this compound presents challenges in achieving enantiomeric purity, stability, and optimal bioavailability. Researchers explore various strategies, including the use of specific solvents, resolving agents, and formulation techniques to overcome these hurdles. [, , , ]

Q6: How is this compound absorbed, distributed, metabolized, and excreted (ADME) in the body?

A6: While this compound lacks the calcium channel blocking activity of its (S)-enantiomer, research indicates it exhibits different pharmacokinetic properties. Studies in healthy volunteers show that this compound is more rapidly eliminated from plasma compared to (S)-amlodipine. [] Further research is needed to comprehensively understand its specific ADME profile.

Q7: Are there any in vitro studies demonstrating the effects of this compound on smooth muscle cell migration?

A7: While the provided abstracts don't offer detailed in vitro data, they highlight this compound's potent inhibition of smooth muscle cell migration. [, , ] Further research is crucial to elucidate the specific molecular mechanisms underlying this effect.

Descargo de responsabilidad e información sobre productos de investigación in vitro

Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.