Ranitidine
Descripción general
Descripción
Ranitidina es un antagonista del receptor H2 de la histamina que se usó ampliamente para disminuir la producción de ácido estomacal. Se recetó comúnmente para el tratamiento de la enfermedad ulcerosa péptica, la enfermedad por reflujo gastroesofágico y el síndrome de Zollinger-Ellison. Ranitidina se descubrió en Inglaterra en 1976 y entró en uso comercial en 1981. Se comercializó con el nombre de marca Zantac, entre otros .
Mecanismo De Acción
Ranitidina funciona bloqueando los receptores H2 de la histamina en el revestimiento del estómago. La histamina, liberada de las células similares a las enterocromafines, se une a estos receptores y estimula la secreción de ácido gástrico. Al bloquear estos receptores, la ranitidina reduce la producción de ácido gástrico, aliviando así los síntomas asociados con el exceso de ácido estomacal .
Aplicaciones Científicas De Investigación
Ranitidina se ha estudiado ampliamente por sus aplicaciones en diversos campos:
Química: Las propiedades químicas y las reacciones de ranitidina se han explorado para desarrollar nuevos métodos de síntesis y comprender sus vías de degradación.
Biología: Ranitidina se ha utilizado en estudios relacionados con sus efectos sobre los receptores de histamina y su papel en la reducción de la secreción de ácido gástrico.
Medicina: Ranitidina se usó ampliamente para tratar afecciones como úlceras pépticas, enfermedad por reflujo gastroesofágico y síndrome de Zollinger-Ellison.
Análisis Bioquímico
Biochemical Properties
Ranitidine works by blocking the action of histamine on the H2 receptors of the parietal cells in the stomach, thereby reducing the production of stomach acid. The compound interacts with these receptors, preventing histamine from binding and triggering acid production .
Cellular Effects
This compound’s primary effect on cells is the reduction of gastric acid secretion in parietal cells. This can influence various cellular processes, including the regulation of intracellular pH and the activation of certain enzymes that require an acidic environment .
Molecular Mechanism
The molecular mechanism of this compound involves its binding to H2 receptors on the parietal cells of the stomach. This prevents histamine from binding to these receptors and triggering the secretion of gastric acid. This action does not involve enzyme inhibition or activation, but rather receptor antagonism .
Temporal Effects in Laboratory Settings
In laboratory settings, the effects of this compound are observed to be relatively stable over time. The drug does not undergo significant degradation and continues to exert its acid-suppressing effects as long as it is present in the system .
Dosage Effects in Animal Models
In animal models, the effects of this compound have been observed to be dose-dependent. Higher doses result in greater suppression of gastric acid secretion. Extremely high doses may lead to adverse effects, although these are generally rare .
Metabolic Pathways
This compound is metabolized in the liver through the cytochrome P450 system. It does not significantly interact with or alter other metabolic pathways .
Transport and Distribution
After oral administration, this compound is absorbed in the gastrointestinal tract and distributed throughout the body. It can cross cell membranes and reach its site of action in the stomach .
Subcellular Localization
This compound acts on the cell surface, specifically on the H2 receptors of parietal cells in the stomach. It does not have a specific subcellular localization as its site of action is on the cell surface .
Métodos De Preparación
Rutas sintéticas y condiciones de reacción: La ranitidina se puede sintetizar a través de múltiples vías. Un método común involucra el intermedio 5-(dimetilamino)furfurylthioethylamine. La síntesis comienza con alcohol furfurilico, que se somete a una serie de reacciones para formar el intermedio. Este intermedio luego se hace reaccionar con l-metiltio-l-(N-metilamino)-2-nitroeteno para producir ranitidina .
Métodos de producción industrial: La producción industrial de ranitidina generalmente involucra el uso de solventes orgánicos y condiciones de reacción moderadas. Por ejemplo, el compuesto se puede sintetizar tratando un intermedio con sales de N,N-dimetilaminotrifenilfosfonio y dimetilamina a alrededor de 90 °C en solventes orgánicos como la dimetilformamida .
Análisis De Reacciones Químicas
Tipos de reacciones: Ranitidina experimenta diversas reacciones químicas, que incluyen:
Oxidación: Ranitidina se puede oxidar en ciertas condiciones, lo que lleva a la formación de diferentes subproductos.
Reactivos y condiciones comunes:
Oxidación: Se pueden usar agentes oxidantes comunes para oxidar ranitidina.
Fotólisis: Las reacciones de fotólisis generalmente requieren exposición a la luz y pueden verse influenciadas por la presencia de materia orgánica natural.
Principales productos formados:
Oxidación: Se pueden formar varios productos de oxidación, dependiendo de las condiciones y reactivos específicos utilizados.
Fotólisis: La fotólisis de ranitidina puede conducir a la formación de múltiples productos de degradación.
Comparación Con Compuestos Similares
Ranitidina pertenece a la clase de antagonistas del receptor H2 de la histamina, que también incluye compuestos como cimetidina y famotidina.
Compuestos similares:
Cimetidina: El primer antagonista del receptor H2 descubierto. Tiene un mecanismo de acción similar pero una estructura química diferente.
Singularidad de la ranitidina: Ranitidina se prefería a la cimetidina debido a su perfil de efectos secundarios mejorado y su potencia. Las preocupaciones sobre la presencia de N-nitrosodimetilamina en los productos de ranitidina han llevado a su retiro de muchos mercados .
Propiedades
IUPAC Name |
(E)-1-N'-[2-[[5-[(dimethylamino)methyl]furan-2-yl]methylsulfanyl]ethyl]-1-N-methyl-2-nitroethene-1,1-diamine | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C13H22N4O3S/c1-14-13(9-17(18)19)15-6-7-21-10-12-5-4-11(20-12)8-16(2)3/h4-5,9,14-15H,6-8,10H2,1-3H3/b13-9+ | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
VMXUWOKSQNHOCA-UKTHLTGXSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CNC(=C[N+](=O)[O-])NCCSCC1=CC=C(O1)CN(C)C | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Isomeric SMILES |
CN/C(=C\[N+](=O)[O-])/NCCSCC1=CC=C(O1)CN(C)C | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C13H22N4O3S | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID101112063 | |
Record name | (1E)-N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID101112063 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
314.41 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Solid | |
Record name | Ranitidine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001930 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Solubility |
Water soluble | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Mechanism of Action |
H2 antagonists inhibit gastric acid secretion elicited by histamine and other H2 agonists in a dose dependent, competitive manner; the degree of inhibition parallels the concentration of the drug in plasma over a wide range. The H2 antagonists also inhibit acid secretion elicited by gastrin and, to a lesser extent, by muscarinic agonists. Importantly, these drugs inhibit basal (fasting) and nocturnal acid secretion and that stimulated by food, sham feeding, fundic distention, and various pharmacological agents; this property reflects the vital role of histamine in mediating the effects of diverse stimuli. /H2 Receptor Antagonists/, ... /H2 Antagonists/ measurably inhibit effects on the cardiovascular and other systems that are elicited through H2 receptors by exogenous or endogenous histamine. /H2 Receptor Antagonists/, ...IS A COMPETITIVE ANTAGONIST OF HISTAMINE-INDUCED GASTRIC ACID SECRETION... INHIBITS BOTH THE VOLUME AND CONCENTRATION OF GASTRIC ACID INDUCED NOCTURNALLY AND BY FOOD BUT DOES NOT AFFECT GASTRIC MUCUS OR ITS PRODUCTION. ...DOES NOT AFFECT LOWER ESOPHAGEAL SPHINCTER PRESSURE... | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Color/Form |
SOLID | |
CAS No. |
82530-72-1, 66357-35-5 | |
Record name | (1E)-N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=82530-72-1 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | ranitidine | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757851 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | (1E)-N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID101112063 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | Ranitidine | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.060.283 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Ranitidine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001930 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
69-70 °C, MP: 133-134 °C /RATINIDINE HYDROCHLORIDE/ | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Q1: How does ranitidine exert its therapeutic effect?
A: this compound acts as a competitive antagonist at histamine H2 receptors found on the basolateral membrane of parietal cells in the stomach. [] By blocking histamine binding to these receptors, this compound effectively reduces the secretion of gastric acid, providing relief from symptoms associated with hyperacidity. []
Q2: What are the key pharmacokinetic properties of this compound?
A: this compound is well absorbed after oral administration, reaching peak plasma concentrations within 1-3 hours. [] It is metabolized in the liver to several metabolites, with the primary metabolite being desmethylthis compound. [] Approximately 77% of an administered dose is excreted unchanged in the urine, with the remainder excreted as metabolites. [] The elimination half-life of this compound is 2.9-3.9 hours. []
Q3: Does this compound interact with other drugs?
A: Yes, this compound has been shown to interact with several drugs, primarily through its effects on drug-metabolizing enzymes in the liver. [] It can inhibit the cytochrome P450 enzyme system, particularly the CYP1A2 and CYP2D6 isoenzymes. [] This inhibition can lead to increased plasma concentrations of drugs that are metabolized by these enzymes, potentially resulting in adverse effects.
Q4: What are the safety concerns associated with this compound use?
A: While generally well-tolerated, this compound has been associated with rare but potentially serious adverse effects, including hypersensitivity reactions, hematological abnormalities, and hepatic dysfunction. [, ] Furthermore, the detection of N-nitrosodimethylamine (NDMA), a probable human carcinogen, in certain this compound formulations has raised concerns about potential long-term risks. []
Q5: What formulations of this compound are available?
A: this compound is available in various formulations, including oral tablets, effervescent tablets, syrups, and solutions for intravenous administration. [] The choice of formulation depends on the patient's age, medical condition, and preference.
Q6: What are the main therapeutic applications of this compound?
A6: this compound was widely prescribed for conditions associated with gastric hyperacidity, such as:
- Duodenal and gastric ulcers: Clinical trials demonstrated the efficacy of this compound in promoting ulcer healing and relieving symptoms. [, ]
- Gastroesophageal reflux disease (GERD): this compound effectively reduces heartburn and other symptoms of GERD. []
- Zollinger-Ellison syndrome: This rare condition involves excessive gastric acid production, and this compound can help manage symptoms. []
Q7: What alternatives to this compound are available for treating acid-related disorders?
A7: Several alternatives to this compound are available, including:
- Proton pump inhibitors (PPIs): These drugs, such as omeprazole, lansoprazole, and esomeprazole, are more potent inhibitors of gastric acid secretion than H2-receptor antagonists. []
- Antacids: These over-the-counter medications provide rapid but short-term relief from heartburn and indigestion by neutralizing stomach acid. []
- Alginates: These medications form a protective barrier over the stomach contents, preventing acid reflux into the esophagus. []
Descargo de responsabilidad e información sobre productos de investigación in vitro
Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.