Hydrochlorothiazide
Descripción general
Descripción
La hidroclorotiazida es un diurético tiazídico ampliamente utilizado, prescrito principalmente para el tratamiento de la hipertensión (presión arterial alta) y el edema (retención de líquidos). También se utiliza para controlar afecciones como la diabetes insípida y la acidosis tubular renal, y para reducir el riesgo de cálculos renales en personas con niveles altos de calcio en la orina . La hidroclorotiazida funciona inhibiendo la reabsorción de iones sodio y cloruro en los riñones, lo que lleva a un aumento de la producción de orina y una disminución del volumen sanguíneo .
Mecanismo De Acción
La hidroclorotiazida ejerce sus efectos inhibiendo el simpuerto sodio-cloruro en los túbulos contorneados distales de los riñones. Esta inhibición evita la reabsorción de iones sodio y cloruro, lo que lleva a una mayor excreción de estos iones junto con el agua. El efecto diurético resultante reduce el volumen sanguíneo y disminuye la resistencia vascular periférica, lo que disminuye la presión arterial . Además, la acción de la hidroclorotiazida en el transporte iónico puede influir en el equilibrio electrolítico y la función renal .
Métodos De Preparación
Rutas sintéticas y condiciones de reacción: La hidroclorotiazida se sintetiza mediante un proceso químico de varios pasos. La síntesis generalmente implica la reacción de 3-cloroanilina con ácido clorosulfónico para formar 3-cloro-4-sulfamoilanilina. Este intermedio luego se cicla con tiourea para producir la estructura del anillo tiazídico, lo que da como resultado hidroclorotiazida .
Métodos de producción industrial: La producción industrial de hidroclorotiazida implica rutas sintéticas similares, pero a mayor escala. El proceso está optimizado para obtener un alto rendimiento y pureza, a menudo involucrando técnicas avanzadas como la cromatografía líquida de alta resolución (HPLC) para purificación y control de calidad .
Análisis De Reacciones Químicas
Tipos de reacciones: La hidroclorotiazida experimenta varias reacciones químicas, que incluyen:
Oxidación: La hidroclorotiazida puede oxidarse en condiciones específicas, lo que lleva a la formación de sulfóxidos y sulfonas.
Reducción: Las reacciones de reducción pueden convertir la hidroclorotiazida en sus derivados de amina correspondientes.
Reactivos y condiciones comunes:
Oxidación: Los agentes oxidantes comunes incluyen peróxido de hidrógeno y permanganato de potasio.
Reducción: Se utilizan agentes reductores como el hidruro de aluminio y litio y el borohidruro de sodio.
Sustitución: Los nucleófilos como las aminas y los tioles se emplean en reacciones de sustitución.
Productos principales:
Oxidación: Sulfóxidos y sulfonas.
Reducción: Derivados de amina.
Sustitución: Derivados de tiazida sustituidos.
Aplicaciones Científicas De Investigación
La hidroclorotiazida tiene una amplia gama de aplicaciones de investigación científica:
Química: Se utiliza como un compuesto modelo en estudios de mecanismos diuréticos e interacciones farmacológicas.
Biología: Investigada por sus efectos en el transporte iónico celular y el equilibrio electrolítico.
Medicina: Se ha estudiado ampliamente por sus efectos terapéuticos en la hipertensión, la insuficiencia cardíaca y los trastornos renales.
Industria: Se utiliza en el desarrollo de terapias farmacológicas combinadas y formulaciones farmacéuticas.
Comparación Con Compuestos Similares
La hidroclorotiazida forma parte de la clase de diuréticos tiazídicos, que incluye compuestos similares como la clorotiazida, la clortalidona y la indapamida. En comparación con estos compuestos, la hidroclorotiazida es conocida por su vida media relativamente corta y su rápido inicio de acción .
Compuestos similares:
Clorotiazida: Otro diurético tiazídico con una vida media más larga.
Clortalidona: Conocida por su mayor duración de acción y mayor potencia.
Indapamida: Un diurético similar a la tiazida con propiedades vasodilatadoras adicionales.
El equilibrio único de eficacia, seguridad y rentabilidad de la hidroclorotiazida la convierte en una opción muy preferida para el manejo de la hipertensión y el edema .
Propiedades
IUPAC Name |
6-chloro-1,1-dioxo-3,4-dihydro-2H-1λ6,2,4-benzothiadiazine-7-sulfonamide | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C7H8ClN3O4S2/c8-4-1-5-7(2-6(4)16(9,12)13)17(14,15)11-3-10-5/h1-2,10-11H,3H2,(H2,9,12,13) | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
JZUFKLXOESDKRF-UHFFFAOYSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
C1NC2=CC(=C(C=C2S(=O)(=O)N1)S(=O)(=O)N)Cl | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C7H8ClN3O4S2 | |
Record name | HYDROCHLOROTHIAZIDE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20489 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | hydrochlorothiazide | |
Source | Wikipedia | |
URL | https://en.wikipedia.org/wiki/Hydrochlorothiazide | |
Description | Chemical information link to Wikipedia. | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID2020713 | |
Record name | Hydrochlorothiazide | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID2020713 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
297.7 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Crystals or white powder. (NTP, 1992), Solid | |
Record name | HYDROCHLOROTHIAZIDE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20489 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Hydrochlorothiazide | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001928 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Solubility |
>44.7 [ug/mL] (The mean of the results at pH 7.4), less than 0.1 mg/mL at 72.5 °F (NTP, 1992), In water, 722 mg/L at 25 °C, Soluble in ethanol at approximately 750 g/L; soluble in acetone, dilute ammonia; freely soluble in sodium hydroxide solution, n-butylamine, dimethylformamide; sparingly soluble in alcohol; insoluble in ether, chloroform, dilute mineral acids, Soluble in sodium hydroxide solution, Freely soluble in sodium hydroxide solution, in n-butylamine and in dimethylformamide; sparingly soluble in methanol; insoluble in dilute mineral acids, 0.722 mg/mL at 25 °C | |
Record name | SID855646 | |
Source | Burnham Center for Chemical Genomics | |
URL | https://pubchem.ncbi.nlm.nih.gov/bioassay/1996#section=Data-Table | |
Description | Aqueous solubility in buffer at pH 7.4 | |
Record name | HYDROCHLOROTHIAZIDE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20489 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Hydrochlorothiazide | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00999 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Hydrochlorothiazide | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3096 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Hydrochlorothiazide | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001928 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Density |
1.693 g/cu cm | |
Record name | Hydrochlorothiazide | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3096 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Mechanism of Action |
Hydrochlorothiazide is transported from the circulation into epithelial cells of the distal convoluted tubule by the organic anion transporters OAT1, OAT3, and OAT4. From these cells, hydrochlorothiazide is transported to the lumen of the tubule by multidrug resistance associated protein 4 (MRP4). Normally, sodium is reabsorbed into epithelial cells of the distal convoluted tubule and pumped into the basolateral interstitium by a sodium-potassium ATPase, creating a concentration gradient between the epithelial cell and the distal convoluted tubule that promotes the reabsorption of water. Hydrochlorothiazide acts on the proximal region of the distal convoluted tubule, inhibiting reabsorption by the sodium-chloride symporter, also known as Solute Carrier Family 12 Member 3 (SLC12A3). Inhibition of SLC12A3 reduces the magnitude of the concentration gradient between the epithelial cell and distal convoluted tubule, reducing the reabsorption of water. | |
Record name | Hydrochlorothiazide | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00999 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Color/Form |
White, or practically white crystalline powder, White to off-white crystalline powder | |
CAS No. |
58-93-5 | |
Record name | HYDROCHLOROTHIAZIDE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20489 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Hydrochlorothiazide | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=58-93-5 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Hydrochlorothiazide [USP:INN:BAN:JAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000058935 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Hydrochlorothiazide | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00999 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | hydrochlorothiazide | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757059 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | hydrochlorothiazide | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=53477 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | 2H-1,2,4-Benzothiadiazine-7-sulfonamide, 6-chloro-3,4-dihydro-, 1,1-dioxide | |
Source | EPA Chemicals under the TSCA | |
URL | https://www.epa.gov/chemicals-under-tsca | |
Description | EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting. | |
Record name | Hydrochlorothiazide | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID2020713 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | Hydrochlorothiazide | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.000.367 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | HYDROCHLOROTHIAZIDE | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/0J48LPH2TH | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Record name | Hydrochlorothiazide | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3096 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Hydrochlorothiazide | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001928 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
523 to 527 °F (NTP, 1992), 266-268, 273-275 °C, 274 °C | |
Record name | HYDROCHLOROTHIAZIDE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20489 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Hydrochlorothiazide | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00999 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Hydrochlorothiazide | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3096 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Hydrochlorothiazide | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001928 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Q1: How does Hydrochlorothiazide exert its antihypertensive effect?
A1: this compound (HCTZ) primarily acts on the distal convoluted tubule in the kidneys to inhibit sodium and chloride reabsorption. This leads to increased sodium and water excretion, thereby reducing blood volume and lowering blood pressure. [, , , ]
Q2: Does this compound have any impact on the renin-angiotensin-aldosterone system?
A2: While HCTZ's primary mechanism doesn't directly involve the renin-angiotensin-aldosterone system, its diuretic effect can lead to a compensatory increase in plasma renin activity and aldosterone levels. [] This can sometimes counteract its blood pressure-lowering effects. [, ]
Q3: Are there any studies comparing this compound with other diuretics like indapamide?
A3: Yes, a study compared the hypotensive, metabolic, and endothelial effects of indapamide-retard and HCTZ. Despite similar blood pressure-lowering effects, indapamide showed a more favorable metabolic profile, with no significant elevation of triglycerides or glucose, unlike HCTZ. []
Q4: What is the molecular formula and weight of this compound?
A4: The molecular formula of this compound is C12H11ClN3O4S2, and its molecular weight is 353.82 g/mol.
Q5: Can Raman spectroscopy be used to study this compound inclusion complexes?
A5: Yes, Raman spectroscopy has been successfully used to study the formation of inclusion complexes between this compound and β-cyclodextrin. The technique confirmed the presence of hydrogen bonds between the drug and the cyclodextrin molecule. []
Q6: What analytical methods are commonly used to quantify this compound in pharmaceutical formulations?
A6: Several analytical methods are employed to quantify HCTZ in pharmaceutical formulations, including:
- High-Performance Liquid Chromatography (HPLC): This versatile technique allows simultaneous determination of HCTZ with other antihypertensive drugs like amlodipine, valsartan, and quinapril. [, , , ]
- UV Spectrophotometry: This method offers simplicity and cost-effectiveness for HCTZ quantification, either alone or in combination with other drugs like losartan potassium. [, ]
- High-Performance Thin Layer Chromatography (HPTLC): HPTLC provides a rapid and precise alternative for analyzing HCTZ in tablet formulations, often alongside drugs like candesartan cilexetil. []
Q7: What formulation strategies are used to improve the dissolution and bioavailability of this compound?
A7: Direct powder compression using disintegrants like croscarmellose sodium (CMS-Na) and low-substituted hydroxypropyl cellulose (L-HPC) has shown promise in improving the dissolution rate of this compound dispersible tablets. []
Q8: Are there studies on the stability of this compound under various stress conditions?
A8: Yes, stability-indicating HPLC methods have been developed and validated to assess the stability of this compound under various stress conditions like acidic, basic, oxidative, thermal, and photolytic degradation. These methods ensure the accurate determination of the drug in the presence of its degradation products. [, ]
Q9: What is the duration of action of this compound?
A9: this compound typically has a duration of action of 6 to 12 hours, but its blood pressure-lowering effect may persist for longer. [, , ]
Q10: Does this compound effectively lower both systolic and diastolic blood pressure?
A10: Clinical trials have shown that HCTZ effectively reduces both systolic and diastolic blood pressure, although a higher dose might be needed for optimal control in some patients, especially when combined with other antihypertensives. [, ]
Q11: Are there any studies investigating the long-term effects of this compound on renal hemodynamics?
A11: Research indicates that long-term HCTZ treatment in essential hypertension may positively impact renal hemodynamics, potentially reversing some of the abnormalities associated with the condition. These effects go beyond simple blood pressure reduction and may involve humoral and neural mechanisms. []
Q12: What is the comparative efficacy of this compound combined with other antihypertensives?
A12: Several studies have compared HCTZ combinations with other antihypertensive regimens:
- HCTZ + Ramipril: This combination demonstrated superior antihypertensive effects compared to HCTZ alone, particularly on nocturnal blood pressure, with significant reductions in plasma angiotensin II and aldosterone levels. []
- HCTZ + Amlodipine: This combination, in a fixed-dose triple therapy with valsartan, showed no significant pharmacokinetic interactions and exhibited favorable safety and tolerability profiles. []
- HCTZ + Losartan Potassium: This combination proved effective and well-tolerated in hypertensive patients, with a smooth 24-hour blood pressure control. []
Q13: Are there any concerns about this compound causing electrolyte imbalances?
A13: One notable concern with this compound is its potential to cause hypokalemia (low potassium levels), especially with higher doses or prolonged use. [, , ] This is primarily due to increased potassium excretion through the kidneys.
Q14: What is the impact of this compound on serum potassium levels?
A14: Studies highlight the significant impact of HCTZ on serum potassium, with a high prevalence of hypokalemia observed in hypertensive patients treated with this drug. This emphasizes the importance of potassium level monitoring during therapy. []
Q15: Does combining this compound with other drugs affect its potassium-lowering effect?
A15: Combining HCTZ with certain medications can influence its effects on potassium levels:
- Enalapril: Co-administration of enalapril with HCTZ appears to offer a protective effect against hypokalemia, potentially mitigating potassium loss induced by HCTZ. [, ]
- Amiloride: Similarly, the addition of amiloride to HCTZ therapy can help prevent severe hypokalemia and alkalosis that might arise from using HCTZ alone. [, ]
Q16: Are there any ongoing large-scale studies comparing the cardiovascular outcomes of chlorthalidone and this compound?
A17: Yes, the Diuretic Comparison Project (VA Cooperative Study 597) is a large randomized trial aiming to directly compare the effects of chlorthalidone and HCTZ on cardiovascular outcomes in older patients with hypertension. [] This landmark study promises valuable insights into the long-term efficacy and safety of these commonly prescribed diuretics.
Q17: What are the potential advantages of fixed-dose combination therapies incorporating this compound?
A17: Fixed-dose combinations like those containing HCTZ with amlodipine, valsartan, or losartan potassium present several advantages:
- Improved Patient Compliance: Single-pill combinations can enhance medication adherence by simplifying dosing regimens. []
- Synergistic Effects: Combining drugs with different mechanisms of action can lead to enhanced blood pressure control and potentially lower the required doses of individual components. [, ]
- Cost-Effectiveness: Fixed-dose combinations might offer economic benefits compared to using multiple separate medications. []
Descargo de responsabilidad e información sobre productos de investigación in vitro
Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.