Ranitidine
Vue d'ensemble
Description
La ranitidine est un antagoniste des récepteurs H2 de l'histamine qui était largement utilisé pour réduire la production d'acide gastrique. Il était couramment prescrit pour le traitement de la maladie ulcéreuse peptique, du reflux gastro-œsophagien et du syndrome de Zollinger-Ellison. La this compound a été découverte en Angleterre en 1976 et est entrée en usage commercial en 1981. Elle a été commercialisée sous le nom de marque Zantac, entre autres .
Mécanisme D'action
Target of Action
Ranitidine is a histamine H2-receptor antagonist . These receptors are found on the gastric parietal cells in the stomach . The primary role of these receptors is to mediate the release of gastric acid .
Mode of Action
This compound works by blocking histamine . This results in a decrease in the amount of acid released by the cells of the stomach . It achieves this by reversibly binding to the histamine H2 receptors, which inhibits histamine binding to this receptor, thereby reducing gastric acid secretion .
Biochemical Pathways
The biochemical pathway affected by this compound involves the hormone gastrin. After a meal, gastrin is produced by cells in the lining of the stomach. Gastrin stimulates the release of histamine, which then binds to histamine H2 receptors, leading to the secretion of gastric acid . By blocking these receptors, this compound reduces the secretion of gastric acid .
Pharmacokinetics
This compound has a bioavailability of 50% when administered orally . It is metabolized in the liver by FMOs, including FMO3, among other enzymes . The elimination half-life of this compound is between 2-3 hours, and it is excreted 30-70% through the kidneys .
Result of Action
The molecular and cellular effects of this compound’s action result in a decrease in gastric acid secretion . This helps to prevent and treat gastric-acid associated conditions, including ulcers . It is also used to treat conditions where the stomach produces too much acid, such as Zollinger-Ellison syndrome .
Applications De Recherche Scientifique
Ranitidine has been extensively studied for its applications in various fields:
Chemistry: this compound’s chemical properties and reactions have been explored for developing new synthetic methods and understanding its degradation pathways.
Biology: this compound has been used in studies related to its effects on histamine receptors and its role in reducing gastric acid secretion.
Medicine: this compound was widely used to treat conditions like peptic ulcers, gastroesophageal reflux disease, and Zollinger-Ellison syndrome.
Analyse Biochimique
Biochemical Properties
Ranitidine works by blocking the action of histamine on the H2 receptors of the parietal cells in the stomach, thereby reducing the production of stomach acid. The compound interacts with these receptors, preventing histamine from binding and triggering acid production .
Cellular Effects
This compound’s primary effect on cells is the reduction of gastric acid secretion in parietal cells. This can influence various cellular processes, including the regulation of intracellular pH and the activation of certain enzymes that require an acidic environment .
Molecular Mechanism
The molecular mechanism of this compound involves its binding to H2 receptors on the parietal cells of the stomach. This prevents histamine from binding to these receptors and triggering the secretion of gastric acid. This action does not involve enzyme inhibition or activation, but rather receptor antagonism .
Temporal Effects in Laboratory Settings
In laboratory settings, the effects of this compound are observed to be relatively stable over time. The drug does not undergo significant degradation and continues to exert its acid-suppressing effects as long as it is present in the system .
Dosage Effects in Animal Models
In animal models, the effects of this compound have been observed to be dose-dependent. Higher doses result in greater suppression of gastric acid secretion. Extremely high doses may lead to adverse effects, although these are generally rare .
Metabolic Pathways
This compound is metabolized in the liver through the cytochrome P450 system. It does not significantly interact with or alter other metabolic pathways .
Transport and Distribution
After oral administration, this compound is absorbed in the gastrointestinal tract and distributed throughout the body. It can cross cell membranes and reach its site of action in the stomach .
Subcellular Localization
This compound acts on the cell surface, specifically on the H2 receptors of parietal cells in the stomach. It does not have a specific subcellular localization as its site of action is on the cell surface .
Méthodes De Préparation
Voies de synthèse et conditions de réaction : La ranitidine peut être synthétisée par plusieurs voies. Une méthode courante implique l'intermédiaire 5-(diméthylamino)furfurylthioéthylamine. La synthèse commence par l'alcool furfurylique, qui subit une série de réactions pour former l'intermédiaire. Cet intermédiaire est ensuite mis à réagir avec du l-méthylthio-l-(N-méthylamino)-2-nitroéthylène pour produire de la this compound .
Méthodes de production industrielle : La production industrielle de la this compound implique généralement l'utilisation de solvants organiques et de conditions de réaction modérées. Par exemple, le composé peut être synthétisé en traitant un intermédiaire avec des sels de N,N-diméthylaminotriphénylphosphonium et de la diméthylamine à environ 90 °C dans des solvants organiques comme le diméthylformamide .
Analyse Des Réactions Chimiques
Types de réactions : La ranitidine subit diverses réactions chimiques, notamment :
Oxydation : La this compound peut être oxydée dans certaines conditions, conduisant à la formation de différents sous-produits.
Réactifs et conditions courantes :
Oxydation : Des agents oxydants courants peuvent être utilisés pour oxyder la this compound.
Photolyse : Les réactions de photolyse nécessitent généralement une exposition à la lumière et peuvent être influencées par la présence de matière organique naturelle.
Principaux produits formés :
Oxydation : Différents produits d'oxydation peuvent être formés, selon les conditions et les réactifs spécifiques utilisés.
Photolyse : La photolyse de la this compound peut conduire à la formation de plusieurs produits de dégradation.
4. Applications de la recherche scientifique
La this compound a été largement étudiée pour ses applications dans divers domaines :
Chimie : Les propriétés chimiques et les réactions de la this compound ont été explorées pour développer de nouvelles méthodes de synthèse et comprendre ses voies de dégradation.
Biologie : La this compound a été utilisée dans des études liées à ses effets sur les récepteurs de l'histamine et à son rôle dans la réduction de la sécrétion d'acide gastrique.
Médecine : La this compound était largement utilisée pour traiter des affections comme les ulcères peptiques, le reflux gastro-œsophagien et le syndrome de Zollinger-Ellison.
5. Mécanisme d'action
La this compound agit en bloquant les récepteurs H2 de l'histamine dans la muqueuse gastrique. L'histamine, libérée par les cellules entérochromaffines, se lie à ces récepteurs et stimule la sécrétion d'acide gastrique. En bloquant ces récepteurs, la this compound réduit la production d'acide gastrique, ce qui soulage les symptômes associés à un excès d'acide gastrique .
Comparaison Avec Des Composés Similaires
La ranitidine appartient à la classe des antagonistes des récepteurs H2 de l'histamine, qui comprend également des composés comme la cimétidine et la famotidine.
Composés similaires :
Cimétidine : Le premier antagoniste des récepteurs H2 découvert. Il a un mécanisme d'action similaire mais une structure chimique différente.
Unicité de la this compound : La this compound était préférée à la cimétidine en raison de son profil d'effets secondaires amélioré et de sa puissance. Des inquiétudes concernant la présence de N-nitrosodiméthylamine dans les produits à base de this compound ont conduit à son retrait de nombreux marchés .
Propriétés
IUPAC Name |
(E)-1-N'-[2-[[5-[(dimethylamino)methyl]furan-2-yl]methylsulfanyl]ethyl]-1-N-methyl-2-nitroethene-1,1-diamine | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C13H22N4O3S/c1-14-13(9-17(18)19)15-6-7-21-10-12-5-4-11(20-12)8-16(2)3/h4-5,9,14-15H,6-8,10H2,1-3H3/b13-9+ | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
VMXUWOKSQNHOCA-UKTHLTGXSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CNC(=C[N+](=O)[O-])NCCSCC1=CC=C(O1)CN(C)C | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Isomeric SMILES |
CN/C(=C\[N+](=O)[O-])/NCCSCC1=CC=C(O1)CN(C)C | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C13H22N4O3S | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID101112063 | |
Record name | (1E)-N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID101112063 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
314.41 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Solid | |
Record name | Ranitidine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001930 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Solubility |
Water soluble | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Mechanism of Action |
H2 antagonists inhibit gastric acid secretion elicited by histamine and other H2 agonists in a dose dependent, competitive manner; the degree of inhibition parallels the concentration of the drug in plasma over a wide range. The H2 antagonists also inhibit acid secretion elicited by gastrin and, to a lesser extent, by muscarinic agonists. Importantly, these drugs inhibit basal (fasting) and nocturnal acid secretion and that stimulated by food, sham feeding, fundic distention, and various pharmacological agents; this property reflects the vital role of histamine in mediating the effects of diverse stimuli. /H2 Receptor Antagonists/, ... /H2 Antagonists/ measurably inhibit effects on the cardiovascular and other systems that are elicited through H2 receptors by exogenous or endogenous histamine. /H2 Receptor Antagonists/, ...IS A COMPETITIVE ANTAGONIST OF HISTAMINE-INDUCED GASTRIC ACID SECRETION... INHIBITS BOTH THE VOLUME AND CONCENTRATION OF GASTRIC ACID INDUCED NOCTURNALLY AND BY FOOD BUT DOES NOT AFFECT GASTRIC MUCUS OR ITS PRODUCTION. ...DOES NOT AFFECT LOWER ESOPHAGEAL SPHINCTER PRESSURE... | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Color/Form |
SOLID | |
CAS No. |
82530-72-1, 66357-35-5 | |
Record name | (1E)-N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=82530-72-1 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | ranitidine | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757851 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | (1E)-N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID101112063 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | Ranitidine | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.060.283 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Ranitidine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0001930 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
69-70 °C, MP: 133-134 °C /RATINIDINE HYDROCHLORIDE/ | |
Record name | RANITIDINE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3925 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Q1: How does ranitidine exert its therapeutic effect?
A: this compound acts as a competitive antagonist at histamine H2 receptors found on the basolateral membrane of parietal cells in the stomach. [] By blocking histamine binding to these receptors, this compound effectively reduces the secretion of gastric acid, providing relief from symptoms associated with hyperacidity. []
Q2: What are the key pharmacokinetic properties of this compound?
A: this compound is well absorbed after oral administration, reaching peak plasma concentrations within 1-3 hours. [] It is metabolized in the liver to several metabolites, with the primary metabolite being desmethylthis compound. [] Approximately 77% of an administered dose is excreted unchanged in the urine, with the remainder excreted as metabolites. [] The elimination half-life of this compound is 2.9-3.9 hours. []
Q3: Does this compound interact with other drugs?
A: Yes, this compound has been shown to interact with several drugs, primarily through its effects on drug-metabolizing enzymes in the liver. [] It can inhibit the cytochrome P450 enzyme system, particularly the CYP1A2 and CYP2D6 isoenzymes. [] This inhibition can lead to increased plasma concentrations of drugs that are metabolized by these enzymes, potentially resulting in adverse effects.
Q4: What are the safety concerns associated with this compound use?
A: While generally well-tolerated, this compound has been associated with rare but potentially serious adverse effects, including hypersensitivity reactions, hematological abnormalities, and hepatic dysfunction. [, ] Furthermore, the detection of N-nitrosodimethylamine (NDMA), a probable human carcinogen, in certain this compound formulations has raised concerns about potential long-term risks. []
Q5: What formulations of this compound are available?
A: this compound is available in various formulations, including oral tablets, effervescent tablets, syrups, and solutions for intravenous administration. [] The choice of formulation depends on the patient's age, medical condition, and preference.
Q6: What are the main therapeutic applications of this compound?
A6: this compound was widely prescribed for conditions associated with gastric hyperacidity, such as:
- Duodenal and gastric ulcers: Clinical trials demonstrated the efficacy of this compound in promoting ulcer healing and relieving symptoms. [, ]
- Gastroesophageal reflux disease (GERD): this compound effectively reduces heartburn and other symptoms of GERD. []
- Zollinger-Ellison syndrome: This rare condition involves excessive gastric acid production, and this compound can help manage symptoms. []
Q7: What alternatives to this compound are available for treating acid-related disorders?
A7: Several alternatives to this compound are available, including:
- Proton pump inhibitors (PPIs): These drugs, such as omeprazole, lansoprazole, and esomeprazole, are more potent inhibitors of gastric acid secretion than H2-receptor antagonists. []
- Antacids: These over-the-counter medications provide rapid but short-term relief from heartburn and indigestion by neutralizing stomach acid. []
- Alginates: These medications form a protective barrier over the stomach contents, preventing acid reflux into the esophagus. []
Avertissement et informations sur les produits de recherche in vitro
Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.