molecular formula C4H6N2S B1676384 Méthimazole CAS No. 60-56-0

Méthimazole

Numéro de catalogue: B1676384
Numéro CAS: 60-56-0
Poids moléculaire: 114.17 g/mol
Clé InChI: PMRYVIKBURPHAH-UHFFFAOYSA-N
Attention: Uniquement pour un usage de recherche. Non destiné à un usage humain ou vétérinaire.
En stock
  • Cliquez sur DEMANDE RAPIDE pour recevoir un devis de notre équipe d'experts.
  • Avec des produits de qualité à un prix COMPÉTITIF, vous pouvez vous concentrer davantage sur votre recherche.

Analyse Biochimique

Biochemical Properties

Methimazole plays a crucial role in biochemical reactions by inhibiting the enzyme thyroid peroxidase (TPO). This enzyme is essential for the iodination of tyrosine residues in thyroglobulin, a precursor to thyroid hormones . Methimazole acts as a competitive substrate for TPO, becoming iodinated itself and thus preventing the iodination of thyroglobulin . Additionally, methimazole’s sulfur moiety may interact directly with the iron atom at the center of TPO’s heme molecule .

Cellular Effects

Methimazole affects various types of cells and cellular processes. It primarily influences thyroid follicular cells by inhibiting thyroid hormone synthesis . This inhibition leads to a decrease in the levels of thyroxine (T4) and triiodothyronine (T3), which are critical for regulating metabolism, growth, and development . Methimazole can also cause agranulocytosis, a severe reduction in white blood cells, which necessitates monitoring for signs of infection .

Molecular Mechanism

At the molecular level, methimazole exerts its effects by interfering with the early steps of thyroid hormone synthesis. It inhibits TPO, which catalyzes the conversion of iodide to iodine, a critical step in the production of thyroid hormones . Methimazole’s inhibition of TPO prevents the formation of mono- and di-iodotyrosine, which are necessary for the synthesis of T4 and T3 . This inhibition results in decreased thyroid hormone levels and alleviation of hyperthyroid symptoms .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of methimazole can change over time. Methimazole is rapidly absorbed and concentrated in the thyroid gland, where it remains active for extended periods . Long-term studies have shown that methimazole can maintain euthyroid states in patients with hyperthyroidism for several years . Its efficacy may decrease over time, and some patients may require additional treatments .

Dosage Effects in Animal Models

In animal models, the effects of methimazole vary with different dosages. In cats, methimazole is commonly used to manage hyperthyroidism, and its dosage must be carefully adjusted to avoid adverse effects . Higher doses of methimazole can lead to gastrointestinal disturbances, liver toxicity, and hematological abnormalities . Therefore, it is crucial to monitor and adjust the dosage to achieve the desired therapeutic effect while minimizing side effects .

Metabolic Pathways

Methimazole is metabolized primarily in the liver through the cytochrome P450 enzyme system . It undergoes extensive hepatic metabolism, resulting in several metabolites . The specific enzyme isoforms responsible for methimazole metabolism include CYP450 and flavin-containing monooxygenase (FMO) systems . These metabolic pathways are essential for the drug’s clearance from the body and can influence its therapeutic efficacy and toxicity .

Transport and Distribution

Methimazole is transported and distributed within cells and tissues, with a high concentration in the thyroid gland . It is minimally protein-bound and is actively transported into the thyroid gland against a concentration gradient . This selective concentration in the thyroid gland allows methimazole to effectively inhibit thyroid hormone synthesis while minimizing systemic exposure .

Subcellular Localization

Methimazole’s subcellular localization is primarily within the thyroid follicular cells, where it inhibits TPO activity . The drug’s localization to the thyroid gland is facilitated by its chemical structure, which allows it to interact with TPO and other thyroid-specific proteins . This targeted localization is crucial for its therapeutic action in treating hyperthyroidism .

Analyse Des Réactions Chimiques

Le méthimazole subit diverses réactions chimiques, notamment :

Applications de recherche scientifique

Le this compound a plusieurs applications de recherche scientifique :

Mécanisme d'action

Le this compound exerce ses effets en inhibant l'enzyme thyroperoxydase, essentielle à l'oxydation de l'iodure en iode . Cette inhibition empêche l'iodation de la thyroglobuline, une étape clé dans la synthèse des hormones thyroïdiennes . La partie soufre du this compound peut également interagir directement avec l'atome de fer au centre de la molécule d'hème de la thyroperoxydase .

Comparaison Avec Des Composés Similaires

Le méthimazole est souvent comparé à d'autres agents antithyroïdiens tels que le propylthiouracile et le carbimazole :

Les propriétés uniques du this compound, telles que son inhibition puissante de la thyroperoxydase et sa compatibilité avec diverses applications, en font un composé précieux dans les domaines médical et industriel.

Propriétés

IUPAC Name

3-methyl-1H-imidazole-2-thione
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C4H6N2S/c1-6-3-2-5-4(6)7/h2-3H,1H3,(H,5,7)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

PMRYVIKBURPHAH-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CN1C=CNC1=S
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C4H6N2S
Record name methimazole
Source Wikipedia
URL https://en.wikipedia.org/wiki/Methimazole
Description Chemical information link to Wikipedia.
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID4020820
Record name Methimazole
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID4020820
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

114.17 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Methimazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014901
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Boiling Point

280 °C WITH SOME DECOMP
Record name METHIMAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3361
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Solubility

Freely soluble, Soluble in alcohol, chloroform. Sparingly soluble in ether, petroleum ether., 1 G SOL IN ABOUT 125 ML ETHER, ABOUT 4.5 ML CHLOROFORM, ABOUT 5 ML WATER, 5 ML ALCOHOL, SOL IN PYRIDINE, Slightly soluble in benzene., 1.13e+01 g/L
Record name Methimazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00763
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name METHIMAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3361
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Methimazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014901
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Methimazole's primary mechanism of action appears to be interference in an early step in thyroid hormone synthesis involving thyroid peroxidase (TPO), however the exact method through which methimazole inhibits this step is unclear. TPO, along with hydrogen peroxide, normally catalyzes the conversion of iodide to iodine and then further catalyzes the incorporation of this iodine onto the 3 and/or 5 positions of the phenol rings of tyrosine residues in thyroglobulin. These thyroglobulin molecules then degrade within thyroid follicular cells to form either thyroxine (T4) or tri-iodothyronine (T3), which are the main hormones produced by the thyroid gland. Methimazole may directly inhibit TPO, but has been shown in vivo to instead act as a competitive substrate for TPO, thus becoming iodinated itself and interfering with the iodination of thyroglobulin. Another proposed theory is that methimazole’s sulfur moiety may interact directly with the iron atom at the centre of TPO’s heme molecule, thus inhibiting its ability to iodinate tyrosine residues. Other proposed mechanisms with weaker evidence include methimazole binding directly to thyroglobulin or direct inhibition of thyroglobulin itself., ANTITHYROID DRUGS INHIBIT FORMATION OF THYROID HORMONE LARGELY BY INTERFERING WITH INCORPORATION OF IODINE INTO ORGANIC FORM. ...IMPLIES THAT THEY INTERFERE WITH OXIDATION OF IODIDE ION.../WHICH/ IS PROBABLY BROUGHT ABOUT BY PEROXIDASE. /ANTITHYROID DRUGS/, ANTITHYROID DRUGS INHIBIT THE FORMATION OF THYROID HORMONES BY ITERFERING WITH THE INCORPORATION OF IODINE INTO TYROSYL RESIDUES OF THYROGLOBULIN; THEY ALSO INHIBIT THE COUPLING OF THESE IODOTYROSYL RESIDUES TO FORM IODOTHYRONINES., Methimazole inhibits the synthesis of thyroid hormones by interfering with the incorporation of iodine into tyrosyl residues of thyroglobulin; the drug also inhibits the coupling of these iodotyrosyl residues to form iodothyronine. Although the exact mechanism(s) has not been fully elucidated, methimazole may interfere with the oxidation of iodide ion and iodotyrosyl groups. Based on limited evidence, it appears that the coupling reaction is more sensitive to antithyroid agents than the iodination reaction. Methimazole does not inhibit the action of thyroid hormones already formed and present in the thyroid gland or circulation nor does the drug interfere with the effectiveness of exogenously administered thyroid hormones.
Record name Methimazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00763
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name METHIMAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3361
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

LEAFLETS FROM ALCOHOL, WHITE TO PALE BUFF, CRYSTALLINE SUBSTANCE; STARCH-LIKE IN APPEARANCE & TO TOUCH

CAS No.

60-56-0
Record name Methimazole
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=60-56-0
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Methimazole [USP]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000060560
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Methimazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00763
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name methimazole
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757111
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name methimazole
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=38608
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name 2H-Imidazole-2-thione, 1,3-dihydro-1-methyl-
Source EPA Chemicals under the TSCA
URL https://www.epa.gov/chemicals-under-tsca
Description EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting.
Record name Methimazole
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID4020820
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Thiamazole
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.000.439
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name METHIMAZOLE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/554Z48XN5E
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name METHIMAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3361
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Methimazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014901
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

143-146 °C, 146-148 °C, 146 °C
Record name Methimazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00763
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name METHIMAZOLE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3361
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Methimazole
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014901
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Methimazole
Reactant of Route 2
Reactant of Route 2
Methimazole
Reactant of Route 3
Reactant of Route 3
Methimazole
Reactant of Route 4
Methimazole
Reactant of Route 5
Methimazole
Reactant of Route 6
Methimazole
Customer
Q & A

Q1: How does methimazole exert its antithyroid effect?

A1: Methimazole is a thionamide antithyroid drug that inhibits the synthesis of thyroid hormones. It primarily acts by blocking the enzyme thyroid peroxidase, which is crucial for the iodination of tyrosine residues within thyroglobulin, a precursor to thyroid hormones [, , , , ]. [] This action prevents the formation of both triiodothyronine (T3) and thyroxine (T4). [] Methimazole also inhibits the conversion of T4 to T3 in peripheral tissues, though this effect is considered less significant than its effect on thyroid peroxidase.

Q2: Are there alternative mechanisms by which methimazole might impact thyroid function?

A3: Research suggests that methimazole might exert additional effects beyond inhibiting thyroid peroxidase. For example, a study found that methimazole can scavenge reactive oxygen species (ROS) in porcine thyrocytes, possibly due to its thiol group influencing the glutathione (GSH)/glutathione disulfide (GSSG) ratio []. This antioxidant activity could play a role in its therapeutic effects, although further investigation is necessary.

Q3: What is the chemical structure of methimazole?

A3: Methimazole, also known as 1-methyl-2-mercaptoimidazole, has the following structural characteristics:

    Q4: How stable is methimazole under different storage conditions?

    A4: Information regarding the stability of methimazole under various conditions, such as temperature, humidity, and light exposure, is crucial for its formulation and storage. While the provided research articles do not delve into this aspect, stability studies are essential during drug development and are usually conducted according to ICH guidelines.

    Q5: Does methimazole exhibit any catalytic properties?

    A5: The provided research primarily focuses on methimazole's pharmacological activity as an antithyroid drug. There is no mention of catalytic properties attributed to methimazole in these studies.

    Q6: Have there been any computational studies on methimazole?

    A6: While the provided research articles do not extensively discuss computational studies on methimazole, computational chemistry techniques like molecular docking, molecular dynamics simulations, and quantitative structure-activity relationship (QSAR) modeling could be employed to gain deeper insights into its interactions with thyroid peroxidase and other potential targets.

    Q7: How do structural modifications of methimazole affect its activity?

    A8: One study investigating the effect of methimazole on ROS levels in porcine thyrocytes compared its activity to imidazole and other analogs. Interestingly, they found that only methimazole exhibited a scavenging effect, suggesting that the thiol group plays a crucial role in its activity []. This finding highlights the importance of SAR studies in understanding the relationship between a compound's structure and its biological effects.

    Q8: What formulations of methimazole are available?

    A9: Methimazole is available in oral formulations, such as tablets. Researchers are also exploring alternative delivery methods, including transdermal formulations, to improve patient compliance and potentially reduce side effects [, , ]. One study investigated the bioavailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in cats, but the results indicated poor and variable absorption []. Further research is needed to develop more effective transdermal formulations.

    Q9: What are the SHE regulations surrounding methimazole?

    A9: As with all pharmaceuticals, the development, manufacturing, and distribution of methimazole are subject to stringent safety, health, and environmental (SHE) regulations. These regulations vary depending on the country but generally follow guidelines set by organizations like the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) and the European Medicines Agency (EMA).

    Q10: What is the pharmacokinetic profile of methimazole?

    A11: Methimazole is rapidly absorbed after oral administration, with a bioavailability of approximately 93% []. It exhibits a relatively short half-life of 4-6 hours and is primarily metabolized in the liver. [, , ] Notably, methimazole exhibits low protein binding (1-10%) [], which is important to consider in patients with liver disease or other conditions that can affect protein binding.

    Q11: Does liver cirrhosis affect methimazole metabolism?

    A12: While methimazole is primarily metabolized in the liver, there is limited information on the impact of liver cirrhosis on its clearance. One case report described a patient with liver cirrhosis who developed profound hypothyroidism just 21 days after starting methimazole []. This observation suggests that methimazole clearance might be reduced in patients with liver impairment, although more research is needed to confirm this finding and determine if dose adjustments are necessary.

    Q12: What in vitro models are used to study methimazole's effects?

    A13: Researchers utilize various in vitro models, such as isolated porcine thyrocytes [] and feline kidney epithelial cells (CRFK) [], to investigate the mechanisms of action and potential toxicity of methimazole. These models allow for controlled experiments to study the drug's effects on specific cell types involved in thyroid hormone synthesis and metabolism.

    Q13: What animal models are used to study methimazole?

    A14: Animal models, particularly cats [, , , ] and rats [, , , , , ], have been instrumental in understanding the effects of methimazole. Feline hyperthyroidism, for example, shares similarities with the human condition and allows researchers to study the drug's efficacy and safety in a clinically relevant setting. Rodent models, on the other hand, are valuable for investigating the drug's impact on various organs and systems, including the liver, kidneys, and spleen.

    Q14: What are the key findings from clinical trials on methimazole?

    A15: Numerous clinical trials have investigated the efficacy and safety of methimazole in treating hyperthyroidism. One notable study found that longer-term methimazole therapy (60-120 months) led to significantly higher remission rates compared to conventional 18-24 month courses []. Other trials have explored the use of methimazole in combination with other agents, such as cholesterol absorption inhibitors, to potentially reduce the required dose and minimize side effects [].

    Q15: Has methimazole been studied in pediatric populations?

    A16: While methimazole is widely used in adults, clinical trials specifically investigating its efficacy and safety in pediatric populations are limited. A systematic review on methimazole-induced remission rates in pediatric Graves' disease highlighted the need for more research in this area [].

    Q16: Are there any biomarkers for monitoring methimazole response?

    A20: Monitoring patients on methimazole therapy typically involves regular assessment of thyroid hormone levels (T3, T4) and TSH levels. [, , , , ] Additionally, researchers are exploring the potential of other biomarkers, such as TSH receptor antibody levels, to predict treatment response and remission [, ].

    Q17: How is methimazole quantified in biological samples?

    A21: High-performance liquid chromatography (HPLC) is commonly employed to determine methimazole concentrations in biological samples, such as serum [, , ]. Spectrophotometric methods, utilizing the reaction between methimazole and potassium permanganate, have also been developed for its quantification []. These analytical techniques play a crucial role in pharmacokinetic studies and therapeutic drug monitoring.

    Avertissement et informations sur les produits de recherche in vitro

    Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.