molecular formula C21H29FO5 B194907 Fludrocortisone CAS No. 127-31-1

Fludrocortisone

Numéro de catalogue: B194907
Numéro CAS: 127-31-1
Poids moléculaire: 380.4 g/mol
Clé InChI: AAXVEMMRQDVLJB-BULBTXNYSA-N
Attention: Uniquement pour un usage de recherche. Non destiné à un usage humain ou vétérinaire.
En stock
  • Cliquez sur DEMANDE RAPIDE pour recevoir un devis de notre équipe d'experts.
  • Avec des produits de qualité à un prix COMPÉTITIF, vous pouvez vous concentrer davantage sur votre recherche.

Applications De Recherche Scientifique

Méthodes De Préparation

Analyse Des Réactions Chimiques

La fludrocortisone subit diverses réactions chimiques, notamment :

Les réactifs et les conditions courants utilisés dans ces réactions comprennent les agents oxydants forts pour l’oxydation et les agents réducteurs pour la réduction. Les principaux produits formés à partir de ces réactions sont divers métabolites de la this compound, qui présentent des niveaux de puissance différents .

Propriétés

IUPAC Name

(8S,9R,10S,11S,13S,14S,17R)-9-fluoro-11,17-dihydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C21H29FO5/c1-18-7-5-13(24)9-12(18)3-4-15-14-6-8-20(27,17(26)11-23)19(14,2)10-16(25)21(15,18)22/h9,14-16,23,25,27H,3-8,10-11H2,1-2H3/t14-,15-,16-,18-,19-,20-,21-/m0/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

AAXVEMMRQDVLJB-BULBTXNYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC12CCC(=O)C=C1CCC3C2(C(CC4(C3CCC4(C(=O)CO)O)C)O)F
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@]2([C@H](C[C@]4([C@H]3CC[C@@]4(C(=O)CO)O)C)O)F
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C21H29FO5
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID7023061
Record name Fludrocortisone
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7023061
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

380.4 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Fludrocortisone
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014825
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

In water, 140 mg/L at 25 °C, 2.24e-01 g/L
Record name FLUDROCORTISONE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3332
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Fludrocortisone
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014825
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

The main endogenous mineralocorticoid, aldosterone, is produced in the zona glomerulosa of the adrenal cortex - it acts on mineralocorticoid receptors in the kidneys to increase sodium reabsorption and potassium excretion, which in turn helps to regulate plasma electrolyte composition and blood pressure. In conditions of adrenal insufficiency, such as Addison’s disease, aldosterone is not produced (or is produced in insufficient quantities) and must be replaced by exogenous mineralocorticoids such as fludrocortisone. Fludrocortisone binding to mineralocorticoid receptors causes alterations to DNA transcription and translation of proteins that result in an increased density of sodium channels on the apical side of renal tubule cells and an increased density of Na+-K+-ATPase on the basolateral side. These increases in receptor density result in increased plasma sodium concentrations, and thus increased blood pressure, as well as a decreased plasma potassium concentration. Fludrocortisone may also exert a direct effect on plasma sodium levels via action at the Na+-H+ exchanger found in the apical membrane of renal tubule cells. Fludrocortisone also acts on glucocorticoid receptors, albeit with a much lower affinity - the glucocorticoid potency of fludrocortisone is approximately 5-10 times that of endogenous cortisol, whereas its mineralocorticoid potency is 200-400 times greater., At the cellular level, corticosteroids diffuse across cell membranes and complex with specific cytoplasmic receptors. These complexes then enter the cell nucleus, bind to DNA (chromatin), and stimulate transcription of mRNA (messenger RNA) and subsequent protein synthesis of various enzymes thought to be ultimately responsible for the physiological effects of these hormones., Mineralocorticoids act on the distal tubules to increase potassium excretion, hydrogen ion excretion, and sodium reabsorption and subsequent water retention. Cation transport in other secretory cells is similarly affected; excretion of water and electrolytes by the large intestine and by salivary and sweat glands is also altered, but to a lesser extent.
Record name Fludrocortisone
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00687
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name FLUDROCORTISONE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3332
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

Crystals

CAS No.

127-31-1
Record name Fludrocortisone
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=127-31-1
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Fludrocortisone [INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000127311
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Fludrocortisone
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00687
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name fludrocortisone
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=11318
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Fludrocortisone
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7023061
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Fludrocortisone
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.004.395
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name FLUDROCORTISONE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/U0476M545B
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name FLUDROCORTISONE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3332
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Fludrocortisone
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014825
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Fludrocortisone
Reactant of Route 2
Fludrocortisone
Reactant of Route 3
Fludrocortisone
Reactant of Route 4
Fludrocortisone
Reactant of Route 5
Fludrocortisone
Reactant of Route 6
Fludrocortisone
Customer
Q & A

Q1: How does fludrocortisone exert its effects in the body?

A1: this compound is a synthetic mineralocorticoid, primarily acting as an analog of aldosterone. It binds to the mineralocorticoid receptor (MR) in the distal tubules of the kidney, promoting sodium reabsorption and increasing the excretion of potassium and hydrogen ions. [, , , ] This action leads to increased plasma volume, contributing to increased blood pressure, making it clinically relevant for managing conditions like postural hypotension and adrenal insufficiency. [, , , ]

Q2: Can this compound's glucocorticoid activity contribute to its clinical effects?

A2: While this compound primarily acts as a mineralocorticoid, it also possesses glucocorticoid activity, though significantly less potent than its mineralocorticoid effects. [, ] This glucocorticoid activity becomes particularly relevant at higher doses, as seen in the treatment of postural hypotension, where it may contribute to side effects like posterior subcapsular cataract formation. []

Q3: How does this compound impact potassium levels?

A3: this compound's interaction with MR in the distal tubules promotes potassium excretion. This effect can lead to hypokalemia, especially with prolonged use or high doses. [, , , , , , ] Monitoring potassium levels is crucial during this compound therapy. [, ]

Q4: What is the chemical structure of this compound?

A4: this compound is a synthetic halogenated derivative of hydrocortisone, specifically 9α-Fluorohydrocortisone. Its chemical formula is C21H29FO5.

Q5: What are the common clinical uses of this compound?

A5: this compound is used in the management of:

  • Primary adrenocortical insufficiency (Addison's disease): Supplementing mineralocorticoid deficiency. [, ]
  • Postural hypotension (orthostatic hypotension): Increasing blood volume to alleviate symptoms. [, , , , ]
  • Cerebral salt wasting syndrome (CSWS): Correcting hyponatremia by promoting sodium reabsorption. [, ]

Q6: Are there differences in the effectiveness of this compound compared to other treatments for orthostatic hypotension?

A7: Evidence comparing this compound to other treatments for orthostatic hypotension, such as midodrine or droxidopa, remains limited. Some studies suggest that while this compound may be effective, it might be associated with a higher risk of side effects, particularly in elderly patients or those with pre-existing conditions like congestive heart failure. [, , , , ]

Q7: Is this compound effective in managing hyperkalemia in hemodialysis patients?

A8: A randomized controlled trial investigated the use of this compound for hyperkalemia in hemodialysis patients. [] While the treatment was safe and well-tolerated, it did not demonstrate clinically significant reductions in serum potassium levels. []

Q8: What is the role of this compound in managing subarachnoid hemorrhage (SAH)?

A9: this compound has been investigated for its potential to prevent hyponatremia and subsequent complications in patients with SAH. [, , ] Some studies suggest that early administration of this compound, particularly in patients with increased urinary sodium excretion, may reduce the incidence of symptomatic cerebral vasospasm. []

Q9: What are the potential adverse effects associated with this compound?

A9: Potential adverse effects of this compound, particularly with prolonged use or high doses, include:

  • Hypokalemia: Due to increased potassium excretion. [, , , , , , ]
  • Hypertension: Due to increased sodium and water retention. [, , , , ]
  • Fluid retention and edema: [, , ]
  • Posterior subcapsular cataract formation: Primarily associated with the glucocorticoid activity. []

Q10: Are there any significant drug interactions with this compound?

A10: this compound may interact with various medications, including:

  • Potassium-lowering drugs (e.g., diuretics): May increase the risk of hypokalemia. []
  • Corticosteroids: May increase the risk of side effects. []

Q11: What factors should clinicians consider when prescribing this compound?

A11: Clinicians should consider the following:

  • Patient age: Elderly patients may be more susceptible to adverse effects. []
  • Co-existing medical conditions: Conditions like congestive heart failure, hypertension, and renal insufficiency may influence treatment decisions. [, ]
  • Concomitant medications: Assess for potential drug interactions. []
  • Monitoring: Regular monitoring of blood pressure, electrolytes (particularly potassium), and signs of fluid retention is essential. [, , ]

Avertissement et informations sur les produits de recherche in vitro

Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.