molecular formula C16H21NO2 B1214883 プロプラノロール CAS No. 525-66-6

プロプラノロール

カタログ番号: B1214883
CAS番号: 525-66-6
分子量: 259.34 g/mol
InChIキー: AQHHHDLHHXJYJD-UHFFFAOYSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

説明

プロプラノロールは、1962年に特許を取得し、1964年に医療用として承認されました 。プロプラノロールは、高血圧、狭心症、不整脈などの様々な心臓血管疾患の治療に広く用いられています。 さらに、不安、片頭痛予防、本態性振戦の管理にも用いられています .

2. 製法

プロプラノロールは、いくつかの合成経路を経て合成することができます。一般的な方法の1つは、ナフトールとエピクロロヒドリンを反応させて3-(1-ナフチロキシ)-1,2-エポキシプロパンを生成することです。 この中間体は、次にイソプロピルアミンと反応してプロプラノロールを生成します この反応は、通常、相間移動触媒とアルカリ性媒体を必要とし、プロセスを促進します 工業的生産方法は、多くの場合、同様のステップを含みますが、大規模合成に最適化されており、高収率と高純度が確保されています .

生化学分析

Biochemical Properties

Propranolol plays a significant role in biochemical reactions by interacting with various enzymes, proteins, and other biomolecules. It primarily binds to beta-adrenergic receptors, inhibiting the action of catecholamines like adrenaline and noradrenaline. This interaction leads to a decrease in cyclic adenosine monophosphate (cAMP) levels, which in turn reduces the activity of protein kinase A (PKA). Propranolol also interacts with cytochrome P450 enzymes, particularly CYP2D6 and CYP1A2, which are involved in its metabolism .

Cellular Effects

Propranolol exerts various effects on different types of cells and cellular processes. In cardiac cells, it reduces heart rate and contractility by blocking beta-adrenergic receptors, leading to decreased calcium influx. In neuronal cells, propranolol can cross the blood-brain barrier and influence neurotransmitter release, thereby reducing anxiety and preventing migraines. Additionally, propranolol affects cell signaling pathways by inhibiting the cAMP-PKA pathway, which impacts gene expression and cellular metabolism .

Molecular Mechanism

The molecular mechanism of propranolol involves its binding to beta-adrenergic receptors, which prevents the activation of these receptors by catecholamines. This inhibition leads to a decrease in cAMP levels and subsequent reduction in PKA activity. Propranolol also inhibits the activity of certain cytochrome P450 enzymes, affecting its own metabolism and the metabolism of other drugs. Furthermore, propranolol can modulate gene expression by influencing transcription factors and other regulatory proteins .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of propranolol change over time due to its stability and degradation. Propranolol is relatively stable under physiological conditions, but it can undergo degradation in the presence of light and heat. Long-term studies have shown that propranolol can have sustained effects on cellular function, including prolonged inhibition of beta-adrenergic receptors and persistent changes in gene expression. These effects are observed in both in vitro and in vivo studies .

Dosage Effects in Animal Models

The effects of propranolol vary with different dosages in animal models. At low doses, propranolol effectively reduces heart rate and blood pressure without significant adverse effects. At higher doses, propranolol can cause bradycardia, hypotension, and other toxic effects. Threshold effects have been observed, where a certain dosage is required to achieve the desired therapeutic effect. In animal studies, propranolol has been shown to affect various physiological parameters, including heart rate, blood pressure, and metabolic rate .

Metabolic Pathways

Propranolol is metabolized primarily in the liver through three main pathways: aromatic hydroxylation, N-dealkylation, and direct glucuronidation. The enzymes involved in these pathways include CYP2D6 and CYP1A2. The primary metabolites of propranolol are propranolol glucuronide, naphthyloxylactic acid, and sulfate and glucuronic acid conjugates of 4-hydroxy propranolol. These metabolites possess varying degrees of beta-adrenergic receptor blocking activity and can influence the overall pharmacological effects of propranolol .

Transport and Distribution

Propranolol is transported and distributed within cells and tissues through various mechanisms. It is highly lipophilic, allowing it to cross cell membranes easily and accumulate in tissues with high lipid content, such as the brain and adipose tissue. Propranolol is also transported by specific binding proteins and transporters, which facilitate its distribution within the body. The localization and accumulation of propranolol can affect its therapeutic efficacy and potential side effects .

Subcellular Localization

The subcellular localization of propranolol is influenced by its lipophilicity and interactions with cellular components. Propranolol can localize to various subcellular compartments, including the plasma membrane, mitochondria, and endoplasmic reticulum. Its activity and function can be affected by post-translational modifications and targeting signals that direct it to specific organelles. The subcellular localization of propranolol plays a crucial role in its overall pharmacological effects and therapeutic outcomes .

化学反応の分析

プロプラノロールは、以下の化学反応を含む様々な化学反応を起こします。

これらの反応で用いられる一般的な試薬には、過マンガン酸カリウムなどの酸化剤、水素化ホウ素ナトリウムなどの還元剤、メトキシドナトリウムなどの求核剤が含まれます 。生成される主要な生成物は、反応条件と用いられる試薬によって異なります。

4. 科学研究への応用

プロプラノロールは、様々な科学研究に応用されています。

特性

IUPAC Name

1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C16H21NO2/c1-12(2)17-10-14(18)11-19-16-9-5-7-13-6-3-4-8-15(13)16/h3-9,12,14,17-18H,10-11H2,1-2H3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

AQHHHDLHHXJYJD-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C16H21NO2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID6023525
Record name Propranolol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6023525
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

259.34 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

0.0617 mg/L at 25 °C
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Propranolol is a nonselective β-adrenergic receptor antagonist. Blocking of these receptors leads to vasoconstriction, inhibition of angiogenic factors like vascular endothelial growth factor (VEGF) and basic growth factor of fibroblasts (bFGF), induction of apoptosis of endothelial cells, as well as down regulation of the renin-angiotensin-aldosterone system.
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

525-66-6, 13013-17-7
Record name Propranolol
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=525-66-6
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name racemic-Propranolol
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000525666
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Propranolol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6023525
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name (±)-1-(isopropylamino)-3-(naphthyloxy)propan-2-ol
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.032.592
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name Propranolol
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.007.618
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name PROPRANOLOL
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/9Y8NXQ24VQ
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

96 °C
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

40.0 g of N-pyrrolidone, 20.0 g of propranolol HCl and 20.0 g of polyvinylpyrrolidone with a K value of 90 are dissolved in 40.0 g of demineralized water. This solution is incorporated into 333.3 g of 30% strength polyvinyl acetate dispersion of the invention while stirring. A 200 μm knife is used to spread this mixture onto a 40 μm-thick polyester sheet, which is then dried at 60° C. The spreading process is repeated once more to increase the layer thickness. After covering the polymer layer with a siliconized released liner it is possible to punch out any desired shapes.
Name
N-pyrrolidone
Quantity
40 g
Type
reactant
Reaction Step One
Quantity
20 g
Type
reactant
Reaction Step One
[Compound]
Name
polyvinylpyrrolidone
Quantity
20 g
Type
reactant
Reaction Step One
[Compound]
Name
90
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
40 g
Type
solvent
Reaction Step One
[Compound]
Name
polyvinyl acetate
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
[Compound]
Name
polyester
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Three

Synthesis routes and methods II

Procedure details

2.55 ml of (1-methylethyl)amine (0.0297 mol) are mixed with 1.25 ml of H2O and the mixture is then stirred with 5 g of 1-(1-naphthyloxy)-2,3-epoxypropane (0.0249 mol) and reacted at room temperature for 23 hours.
Quantity
2.55 mL
Type
reactant
Reaction Step One
Name
Quantity
1.25 mL
Type
solvent
Reaction Step One
Quantity
5 g
Type
reactant
Reaction Step Two

Synthesis routes and methods III

Procedure details

To a mixture of 11.5 parts of 1-(iso-propyl)-3-azetidinol and 15.8 parts of α-naphthol 0.2 part of 182°- potassium hydroxide was added, and the mixture was heated under nitrogen gas at 160° C. for 20 hours. The reaction mixture was cooled and then extracted with ether. The ether extract was washed with 2N-NaOH aqueous solution and then with water. The liquor was dried over anhydrous sodium sulfate and the solvent was distilled off. The residue was recrystallized for cyclohexane or subjected to distillation under reduced pressure. As a result 19.6 parts of 1-(α-naphthoxy)-3-(isopropylamino)-2-propanol having a melting point of 94°-96° C. and a boiling point of 158°-159° C. under 2.5 mm Hg were obtained. The yield was 76%. The residue of infra-red spectrum analysis of the product are as follows:
[Compound]
Name
11.5
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One

Synthesis routes and methods IV

Procedure details

1-(isopropyl)-3-azetidinol and α-naphthol were reacted in the same manner as in Example 6 to form 1-(α-naphthoxy)-3-(iso-propylamino)-2-propanol. Then the propanol was dissolved in anhydrous ether and was converted to a hydrochloride by blowing a hydrochloric acid gas into the resulting solution. As a result 1-(α-naphthoxy)-3-(isopropylamino)-2-propanol hydrochloride melting at 162°-164° C was obtained.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Propranolol
Reactant of Route 2
Reactant of Route 2
Reactant of Route 2
Propranolol
Reactant of Route 3
Reactant of Route 3
Propranolol
Reactant of Route 4
Reactant of Route 4
Propranolol
Reactant of Route 5
Reactant of Route 5
Propranolol
Reactant of Route 6
Reactant of Route 6
Propranolol

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。