アジスロマイシン
概要
説明
アジスロマイシンは、さまざまな細菌感染症の治療に用いられる広域スペクトルのマクロライド系抗生物質です。 1980年代にクロアチアの製薬会社プリバ社によって発見され、1988年に医療用として承認されました 。 アジスロマイシンは、長い半減期と高い組織浸透性で知られており、呼吸器感染症、腸管感染症、泌尿生殖器感染症に効果的です .
2. 製法
合成経路と反応条件: アジスロマイシンは、一連の化学反応を経てエリスロマイシンAから合成されます。このプロセスには、エリスロマイシンAをオキシムに変換し、続いてベックマン転位によってエリスロマイシンAのアミノエーテルを生成することが含まれます。 この中間体は次に9-デオキソ-9a-アザ-9a-ホモエリスロマイシンに還元され、最後に還元的なN-メチル化によってアジスロマイシンが得られます .
工業生産方法: アジスロマイシンの工業生産では、多くの場合、アジスロマイシン非晶質固体分散体を調製するために熱溶融押出法が使用されます。この方法は、薬物の溶解性と味覚マスキング特性を向上させます。 最適な押出パラメータには、150°Cの温度、75 rpmのスクリュー速度、25%の薬物含有率が含まれます .
科学的研究の応用
Azithromycin has a wide range of scientific research applications in chemistry, biology, medicine, and industry. It is used to treat bacterial infections, including respiratory, skin, and sexually transmitted infections . In recent years, azithromycin has been studied for its potential use in treating COVID-19, although more research is needed to confirm its efficacy . Additionally, azithromycin-loaded microemulsions have been developed for the treatment of bacterial skin infections, showing prolonged release and accumulation inside the skin .
作用機序
生化学分析
Biochemical Properties
Azithromycin is part of the azalide subclass of macrolides, and contains a 15-membered ring, with a methyl-substituted nitrogen instead of a carbonyl group at the 9a position on the aglycone ring . This allows for the prevention of its metabolism . Azithromycin is a weak substrate for CYP3A4, and is minimally metabolized by the enzyme .
Cellular Effects
Azithromycin is known to have both antiviral and immunomodulatory effects . It interferes with receptor-mediated binding, viral lysosomal escape, intracellular cell-signaling pathways, and enhances type I and III interferon expression . It also disrupts immune and metabolic networks, including down-regulation of mucin production .
Molecular Mechanism
Azithromycin works by decreasing the production of protein, thereby stopping bacterial growth . It binds to the 23S rRNA of the bacterial 50S ribosomal subunit . This inhibits protein synthesis, which is essential for bacterial replication .
Temporal Effects in Laboratory Settings
Azithromycin is used long term for the prevention of exacerbations of bronchiectasis and COPD . The usual dose is 250mg three times a week . It has been demonstrated to maintain azithromycin concentrations at sites of infection and continues to be effective for several days after administration has ceased .
Dosage Effects in Animal Models
In animal models, the effects of azithromycin can vary with different dosages . For example, a single oral dose of 10 to 40 mg/kg provided tissue levels that were proportional to the dose in rats . Two- to 4-fold increases in tissue concentration were observed in rats after being dosed with 20 mg/kg for 7 days .
Metabolic Pathways
Azithromycin is associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles . In vitro, azithromycin exposure inhibited T-cell cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhibition .
Transport and Distribution
Azithromycin gains rapid and high concentration in a number of cells including polymorphonuclear leucocytes, monocytes, and macrophages . Extensive and rapid distribution from serum into the intracellular compartments is followed by rapid distribution to the tissues . Tissue concentrations exceed serum concentrations by up to 100-fold following a single azithromycin 500mg dose .
Subcellular Localization
Azithromycin gains entry into cells by both passive and active transport due to its dibasic amphophilic character . It acts by inhibiting protein biosynthesis at the 50S ribosomal level . Intracellular penetration is greatest in the first 24 hours, but continues for up to 72 hours in human fibroblasts .
準備方法
Synthetic Routes and Reaction Conditions: Azithromycin is synthesized from erythromycin A through a series of chemical reactions. The process involves the conversion of erythromycin A into its oxime, followed by Beckmann rearrangement to form the amino ether of erythromycin A. This intermediate is then reduced to 9-deoxo-9a-aza-9a-homoerythromycin, and finally, reductive N-methylation yields azithromycin .
Industrial Production Methods: Industrial production of azithromycin often involves hot-melt extrusion to prepare azithromycin amorphous solid dispersion. This method improves the solubility and taste-masking properties of the drug. The optimal extrusion parameters include a temperature of 150°C, a screw speed of 75 rpm, and a drug percentage of 25% .
化学反応の分析
反応の種類: アジスロマイシンは、酸化、還元、置換など、さまざまな化学反応を起こします。 たとえば、酸化中に、臭素イオンはアジスロマイシンの孤立電子対に結合し、黄色のカップリング生成物を形成します .
一般的な試薬と条件: アジスロマイシンの反応に使用される一般的な試薬には、酸化のための臭素イオン、ナノ粒子調製のためのさまざまな溶媒および界面活性剤が含まれます .
主な生成物: これらの反応から生成される主な生成物には、アジスロマイシンナノ粒子と非晶質固体分散体が含まれ、これらの生成物は薬物の溶解性と生物学的利用能を向上させます .
4. 科学研究への応用
アジスロマイシンは、化学、生物学、医学、産業において幅広い科学研究への応用範囲を持っています。 呼吸器感染症、皮膚感染症、性感染症など、細菌感染症の治療に使用されます 。 近年では、アジスロマイシンがCOVID-19の治療に効果がある可能性が研究されていますが、その有効性を確認するにはさらなる研究が必要です 。 さらに、アジスロマイシンを負荷したマイクロエマルジョンが細菌性皮膚感染症の治療に開発されており、皮膚内での持続的な放出と蓄積を示しています .
類似化合物との比較
アジスロマイシンは、エリスロマイシンとクラリスロマイシンと構造的に関連しており、どちらもマクロライド系抗生物質です。 アジスロマイシンは、メチル置換窒素を持つ15員環を持っており、これはエリスロマイシンの14員ラクトン環とは異なります 。 この構造上の違いにより、アジスロマイシンはエリスロマイシンよりも半減期が長く、組織への浸透性が高くなります 。 その他の類似化合物には、クラリスロマイシンとロキシスロマイシンがあり、これらは作用機序は似ていますが、薬物動態特性は異なります .
類似化合物:
- エリスロマイシン
- クラリスロマイシン
- ロキシスロマイシン
アジスロマイシンのユニークな構造と特性は、医学と研究において幅広い用途を持つ貴重な抗生物質となっています。
特性
Azithromycin usually is bacteriostatic, although the drug may be bactericidal in high concentrations against selected organisms. Bactericidal activity has been observed in vitro against Streptococcus pyogenes, S. pneumoniae, and Haemophilus influenzae. Azithromycin inhibits protein synthesis in susceptible organisms by penetrating the cell wall and binding to 50S ribosomal subunits, thereby inhibiting translocation of aminoacyl transfer-RNA and inhibiting polypeptide synthesis. The site of action of azithromycin appears to be the same as that of the macrolides (i.e., erythromycin, clarithromycin), clindamycin, lincomycin, and chloramphenicol. The antimicrobial activity of azithromycin is reduced at low pH. Azithromycin concentrates in phagocytes, including polymorphonuclear leukocytes, monocytes, macrophages, and fibroblasts. Penetration of the drug into phagocytic cells is necessary for activity against intracellular pathogens (e.g., Staphylococcus aureus, Legionella pneumophila, Chlamydia trachomatis, Salmonella typhi). | |
CAS番号 |
83905-01-5 |
分子式 |
C38H72N2O12 |
分子量 |
749.0 g/mol |
IUPAC名 |
(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-11-[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-2-ethyl-3,4,10-trihydroxy-13-(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy-3,5,6,8,10,12,14-heptamethyl-1-oxa-6-azacyclopentadecan-15-one |
InChI |
InChI=1S/C38H72N2O12/c1-15-27-38(10,46)31(42)24(6)40(13)19-20(2)17-36(8,45)33(52-35-29(41)26(39(11)12)16-21(3)48-35)22(4)30(23(5)34(44)50-27)51-28-18-37(9,47-14)32(43)25(7)49-28/h20-33,35,41-43,45-46H,15-19H2,1-14H3/t20-,21?,22+,23-,24-,25?,26?,27-,28?,29?,30+,31-,32?,33-,35?,36-,37?,38-/m1/s1 |
InChIキー |
MQTOSJVFKKJCRP-FHZDSTMTSA-N |
SMILES |
CCC1C(C(C(N(CC(CC(C(C(C(C(C(=O)O1)C)OC2CC(C(C(O2)C)O)(C)OC)C)OC3C(C(CC(O3)C)N(C)C)O)(C)O)C)C)C)O)(C)O |
異性体SMILES |
CC[C@@H]1[C@@]([C@@H]([C@H](N(C[C@@H](C[C@@]([C@@H]([C@H]([C@@H]([C@H](C(=O)O1)C)OC2CC(C(C(O2)C)O)(C)OC)C)OC3C(C(CC(O3)C)N(C)C)O)(C)O)C)C)C)O)(C)O |
正規SMILES |
CCC1C(C(C(N(CC(CC(C(C(C(C(C(=O)O1)C)OC2CC(C(C(O2)C)O)(C)OC)C)OC3C(C(CC(O3)C)N(C)C)O)(C)O)C)C)C)O)(C)O |
外観 |
Solid powder |
Color/Form |
Amorphous solid |
melting_point |
113-115 °C White crystalline powder. mp: 126 °C. Optical rotation: -41.4 deg at 26 °C/D (c = 1 in CHCl3) /Azithromycin dihydrate/ |
83905-01-5 | |
物理的記述 |
Solid |
ピクトグラム |
Irritant; Health Hazard; Environmental Hazard |
純度 |
>98% (or refer to the Certificate of Analysis) |
関連するCAS |
117772-70-0 (dihydrate) 121470-24-4 (monohydrate) |
賞味期限 |
>2 years if stored properly |
溶解性 |
soluble in ethanol and DSMO, minimally soluble in water 5.14e-01 g/L |
保存方法 |
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years). |
同義語 |
Azadose Azithromycin Azithromycin Dihydrate Azithromycin Monohydrate Azitrocin Azythromycin CP 62993 CP-62993 CP62993 Dihydrate, Azithromycin Goxal Monohydrate, Azithromycin Sumamed Toraseptol Ultreon Vinzam Zentavion Zithromax Zitromax |
蒸気圧 |
2.65X10-24 mm Hg at 25 °C (est) |
製品の起源 |
United States |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
試験管内研究製品の免責事項と情報
BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。