ベンゾニダゾール
概要
説明
ベンゾニダゾールは、トリパノソーマ・クルージという原虫寄生虫によって引き起こされるシャガス病の治療に主に使用される抗寄生虫薬です 。 これはニトロイミダゾール系の化合物に属し、寄生虫のDNAや細胞機構に損傷を与える遊離基を生成することで作用します 。 ベンゾニダゾールは、他の治療法に比べて中等度の副作用があるため、シャガス病の第一選択治療薬とされています .
2. 製法
合成経路と反応条件: ベンゾニダゾールは、以下の主要なステップを含む複数ステップのプロセスによって合成できます。
ニトロ化: ベンジルアミンをニトロ化して2-ニトロベンジルアミンを生成します。
環化: 2-ニトロベンジルアミンとグリオキサールを環化させて2-ニトロイミダゾールを生成します。
還元: 2-ニトロイミダゾールを2-アミノイミダゾールに還元します。
工業的生産方法: ベンゾニダゾールの工業的生産には、通常、同じ合成経路が採用されますが、より大規模な規模で行われます。 このプロセスは、より高い収率と純度が得られるように最適化されており、多くの場合、連続フローリアクターや自動合成などの高度な技術が使用されます .
科学的研究の応用
ベンゾニダゾールは、次のような幅広い科学研究において応用されています。
化学: ベンゾニダゾールは、ニトロイミダゾールの化学と反応性を調べるためのモデル化合物として使用されています。
生物学: ベンゾニダゾールは、トリパノソーマ・クルージの生物学と抗寄生虫作用のメカニズムを研究するために使用されています。
医学: ベンゾニダゾールは、シャガス病やその他の寄生虫感染症の治療のための臨床研究で広く使用されています。
作用機序
ベンゾニダゾールは、トリパノソーマ・クルージに存在するニトロレダクターゼによって、さまざまな求電子性代謝産物に還元されることでその効果を発揮します 。 これらの代謝産物は、タンパク質、脂質、DNA、RNAに結合し、これらの高分子に損傷を与えます。 この損傷は寄生虫の死滅につながります。 ベンゾニダゾールは、インターフェロン-γを介してトリパノソーマの死滅を増加させることも判明しており、これは高分子損傷によって引き起こされる炎症のために増加している可能性があります .
類似化合物:
ベンゾニダゾールの独自性: ベンゾニダゾールは、中等度の副作用プロファイルと、シャガス病の初期段階における有効性という点でユニークです。 また、米国で承認された最初のシャガス病治療薬でもあります .
生化学分析
Biochemical Properties
Benznidazole is thought to be reduced to various electrophilic metabolites by nitroreductases present in Trypanosoma cruzi . These metabolites likely bind to proteins, lipids, DNA, and RNA resulting in damage to these macromolecules .
Cellular Effects
Benznidazole kills the causative organism in Chagas disease, Trypanosoma cruzi . It is thought to increase trypanosomal death through interferon-γ, which is likely present in increased amounts due to inflammation caused by macromolecule damage .
Molecular Mechanism
The mechanism of action of Benznidazole involves its reduction to various electrophilic metabolites by nitroreductases present in Trypanosoma cruzi . These metabolites likely bind to proteins, lipids, DNA, and RNA, resulting in damage to these macromolecules . DNA in parasites affected by benznidazole has been found to undergo extensive unpacking with overexpression of DNA repair proteins, supporting the idea of DNA damage contributing to the mechanism of the drug .
Metabolic Pathways
Benznidazole is metabolized by nitroreductases in Trypanosoma cruzi and by cytochrome P450 enzymes . This indicates that Benznidazole is involved in significant metabolic pathways within the parasite.
Transport and Distribution
Benznidazole has a bioavailability of 92%, with a peak concentration time of 3–4 hours after administration . This suggests that Benznidazole is efficiently transported and distributed within the body.
準備方法
Synthetic Routes and Reaction Conditions: Benznidazole can be synthesized through a multi-step process involving the following key steps:
Nitration: The nitration of benzylamine to form 2-nitrobenzylamine.
Cyclization: The cyclization of 2-nitrobenzylamine with glyoxal to form 2-nitroimidazole.
Reduction: The reduction of 2-nitroimidazole to 2-aminoimidazole.
Acylation: The acylation of 2-aminoimidazole with benzoyl chloride to form benznidazole.
Industrial Production Methods: Industrial production of benznidazole typically involves the same synthetic route but on a larger scale. The process is optimized for higher yields and purity, often using advanced techniques such as continuous flow reactors and automated synthesis .
化学反応の分析
反応の種類: ベンゾニダゾールは、次のようないくつかの種類の化学反応を起こします。
還元: ベンゾニダゾールは、トリパノソーマ・クルージに存在するニトロレダクターゼによって、さまざまな求電子性代謝産物に還元されます.
酸化: ベンゾニダゾールは、特に強力な酸化剤の存在下で、酸化反応を起こす可能性があります。
置換: ベンゾニダゾールは、特にニトロ基で、求核置換反応に関与する可能性があります。
一般的な試薬と条件:
還元: 一般的な試薬には、ニトロレダクターゼや、ジチオナイトナトリウムなどの還元剤があります。
酸化: 一般的な酸化剤には、過酸化水素や過マンガン酸カリウムがあります。
主な生成物:
還元: 主な生成物は、タンパク質、脂質、DNA、RNAに結合する求電子性代謝産物であり、これらの高分子に損傷を与えます.
酸化: 主な生成物は、ベンゾニダゾールの酸化誘導体です。
類似化合物との比較
Nifurtimox: Another nitroimidazole compound used for the treatment of Chagas disease.
Pentamidine: An antimicrobial used for the treatment of trypanosomiasis and leishmaniasis.
Uniqueness of Benznidazole: Benznidazole is unique in its moderate side effect profile and its effectiveness in the early stages of Chagas disease. It is also the first treatment approved for Chagas disease in the United States .
特性
IUPAC Name |
N-benzyl-2-(2-nitroimidazol-1-yl)acetamide | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C12H12N4O3/c17-11(14-8-10-4-2-1-3-5-10)9-15-7-6-13-12(15)16(18)19/h1-7H,8-9H2,(H,14,17) | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
CULUWZNBISUWAS-UHFFFAOYSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
C1=CC=C(C=C1)CNC(=O)CN2C=CN=C2[N+](=O)[O-] | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C12H12N4O3 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID9046570 | |
Record name | Benznidazole | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID9046570 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
260.25 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Solubility |
>39 [ug/mL] (The mean of the results at pH 7.4) | |
Record name | SID56323658 | |
Source | Burnham Center for Chemical Genomics | |
URL | https://pubchem.ncbi.nlm.nih.gov/bioassay/1996#section=Data-Table | |
Description | Aqueous solubility in buffer at pH 7.4 | |
Mechanism of Action |
Benznidazole is thought to be reduced to various electrophilic metabolites by nitroreductases present in *Trypanosoma cruzi*. These metabolites likely bind to proteins, lipids, DNA, and RNA resulting in damage to these macromolecules. Benznidazole has been found to increase trypanosomal death through interferon-γ which is likely present in increased amounts due to inflammation caused by macromolecule damage. DNA in parasites affected by benznidazole has been found to undergo extensive unpacking with overexpression of DNA repair proteins supporting the idea of DNA damage contributing to the mechanism of the drug. | |
Record name | Benznidazole | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB11989 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
CAS No. |
22994-85-0 | |
Record name | Benznidazole | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=22994-85-0 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Benznidazole [USAN:INN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0022994850 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Benznidazole | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB11989 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | BENZNIDAZOLE | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=299972 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | Benznidazole | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID9046570 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | N-Benzyl-2-nitro-1H-imidazole-1-acetamide | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/information-on-chemicals | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | BENZNIDAZOLE | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/YC42NRJ1ZD | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Melting Point |
190-192 | |
Record name | Benznidazole | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB11989 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
ANone: Although the precise mechanism remains unclear, Benznidazole's activity is believed to stem from its reductive metabolism within the parasite, Trypanosoma cruzi. This process generates reactive metabolites that cause significant damage to parasite DNA, potentially triggering DNA damage response pathways and inhibiting parasite replication. [, , , ]
ANone: Benznidazole treatment leads to widespread DNA damage in T. cruzi. [, ] This can induce a transient non-replicative state in the surviving intracellular amastigotes, likely as part of the parasite's attempt at DNA repair. [] Additionally, Benznidazole treatment can affect the expression of various proteins in T. cruzi, including those involved in transcription, protein destination, and oxidative stress responses. [, ]
ANone: Benznidazole's molecular formula is C12H12N4O3, and its molecular weight is 260.25 g/mol. []
ANone: Yes, studies have investigated the electrochemical reduction of Benznidazole using techniques like cyclic voltammetry with DNA-electrochemical biosensors. These studies revealed details about the reduction mechanism, highlighting the formation of a hydroxylamine derivative as a potentially cytotoxic species. []
ANone: Studies show that Benznidazole demonstrates good compatibility with most pharmaceutical excipients, showing thermal incompatibility only with polyethylene glycol. []
ANone: While Benznidazole is primarily known for its antiparasitic activity, its mechanism of action does not involve direct catalytic properties. Its efficacy is linked to its metabolic activation within the parasite, leading to the formation of reactive species that damage parasite DNA. [, , , ]
ANone: While computational studies specific to Benznidazole's mechanism are limited in the provided research, the identification of specific protein alterations in resistant strains, like overexpression of mitochondrial superoxide dismutase and tryparedoxin-1, could offer potential targets for computational modeling and drug design efforts in the future. []
ANone: Research highlights the development of several nanoformulations, such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, quatsomes, and cyclodextrins, to enhance Benznidazole's therapeutic profile. These approaches aim to improve solubility, bioavailability, and potentially reduce toxicity. [, ]
ANone: Yes, in vitro studies suggest that cyclodextrin-Benznidazole complexes exhibit significantly lower cytotoxicity compared to free Benznidazole, while maintaining comparable trypanocidal activity. This finding highlights the potential of cyclodextrin-based formulations for improving the safety profile of Benznidazole treatment. []
ANone: While the provided research doesn't offer detailed safety protocols, standard procedures for handling potentially hazardous substances should be followed. This includes using appropriate personal protective equipment, ensuring adequate ventilation, and following established waste disposal regulations. Further consultation with relevant safety data sheets and guidelines is recommended.
ANone: Studies in mice chronically infected with the Berenice-78 strain of T. cruzi showed altered Benznidazole pharmacokinetics compared to healthy mice. This includes increased absorption rate, volume of distribution, and clearance, along with reduced time to reach maximum serum concentration and absorption half-life. These changes suggest potential influences of chronic inflammation on drug absorption and distribution. []
ANone: Yes, research indicates that chronic T. cruzi infection in mice leads to longer and higher Benznidazole exposure in the colon and heart. Additionally, tissue penetration ratios (AUCtissue/AUCserum) were significantly increased in the brain, colon, and heart of infected mice, suggesting altered drug distribution patterns. []
ANone: Research using a mouse model of chronic Chagas disease demonstrated that Benznidazole treatment led to a decrease in both cardiac parasitism and myocarditis compared to untreated infected mice. Additionally, treated mice showed reduced cardiac conduction disturbances, suggesting a protective effect of the drug on cardiac function. []
ANone: Studies utilizing bioluminescent imaging showed that early initiation of Benznidazole treatment during acute T. cruzi infection in mice resulted in complete parasite clearance, while delayed treatment initiation led to parasite persistence despite exhibiting initial efficacy. This highlights the importance of early diagnosis and treatment for optimal outcomes. []
ANone: Research shows that Benznidazole treatment in chronically infected mice can modulate the immune response against T. cruzi. This includes a reduction in antibody levels against various parasite antigens, as well as a decrease in antibodies against cardiac receptors, suggesting a potential benefit in mitigating autoimmune responses associated with Chagasic cardiomyopathy. []
ANone: Benznidazole resistance in T. cruzi is a significant concern. Studies have identified T. cruzi strains with varying levels of susceptibility to Benznidazole. This variability appears to be linked to several factors, including the parasite's genetic background and alterations in specific proteins involved in drug metabolism and oxidative stress response. [, , , ]
ANone: Yes, studies have identified T. cruzi strains exhibiting resistance to both Benznidazole and Nifurtimox, the two main drugs used for Chagas disease treatment. This cross-resistance poses a significant challenge for disease management and highlights the urgent need for new therapeutic options. [, , ]
ANone: Yes, research has identified T. cruzi strains resistant to Benznidazole, Nifurtimox, and conventional antifungal azoles like ketoconazole. This highlights the challenge of treating infections with multidrug-resistant strains and emphasizes the need for novel therapeutic strategies. []
ANone: Benznidazole treatment is known to cause a range of adverse events, with hypersensitivity reactions being the most common. These reactions can manifest as skin rashes, itching, and other allergic symptoms. Other reported side effects include headache, gastrointestinal disturbances, and neurological symptoms. [, , ]
ANone: Yes, studies suggest that female patients are more prone to experiencing adverse events, particularly hypersensitivity reactions, compared to male patients. Additionally, the specific type of Benznidazole formulation used may also influence the risk of certain adverse events. []
ANone: Nanoformulations, such as those encapsulated in lipid nanoparticles or cyclodextrins, offer several potential advantages over conventional Benznidazole formulations. These include improved drug solubility and bioavailability, enhanced drug stability, and potentially reduced toxicity by enabling targeted drug delivery and controlled drug release. [, ]
ANone: Yes, research has investigated the use of nanoformulated Benznidazole administered through different regimens, including continuous daily dosing and intermittent dosing (once every 7 days). Both approaches demonstrated promising outcomes in a chronic mouse model of T. cruzi infection, including parasite clearance, reduced tissue damage, and improved cardiac function. Importantly, the intermittent dosing regimen achieved these results with a lower total drug dose, highlighting its potential for improved therapeutic index. []
ANone: While the provided research does not focus on specific biomarkers for monitoring Benznidazole treatment response, studies highlight the importance of PCR-based methods for detecting parasite DNA in blood and tissues. These methods offer greater sensitivity compared to traditional parasitological methods and can help assess treatment efficacy more accurately. [, , ]
ANone: High-performance liquid chromatography (HPLC) coupled with diode array detection is a widely used technique for quantifying Benznidazole concentrations in biological samples like serum and tissues. This method offers high sensitivity and selectivity for accurate drug monitoring. [, ]
試験管内研究製品の免責事項と情報
BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。