molecular formula C28H33N7O2 B560133 Osimertinib CAS No. 1421373-65-0

Osimertinib

カタログ番号: B560133
CAS番号: 1421373-65-0
分子量: 499.6 g/mol
InChIキー: DUYJMQONPNNFPI-UHFFFAOYSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

生化学分析

Biochemical Properties

Osimertinib is a potent, selective, irreversible EGFR-TKI . It interacts with EGFR, a protein that plays a crucial role in cell growth and division . This compound covalently binds to EGFR C797, reducing the effect of this compound in inhibiting cell proliferation and EGFR phosphorylation .

Cellular Effects

This compound has significant effects on various types of cells and cellular processes. It influences cell function by impacting cell signaling pathways, gene expression, and cellular metabolism . This compound has been shown to significantly sensitize both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs .

Molecular Mechanism

This compound exerts its effects at the molecular level through several mechanisms. It binds irreversibly to the gate-keeper T790M mutations which increases ATP binding activity to EGFR and result in poor prognosis for late-stage disease . Furthermore, this compound has been shown to spare wild-type EGFR during therapy, thereby reducing non-specific binding and limiting toxicity .

Temporal Effects in Laboratory Settings

In laboratory settings, this compound has shown changes in its effects over time. For instance, it has been observed that resistance to this compound inevitably develops during the treatment, limiting its long-term effectiveness .

Dosage Effects in Animal Models

In animal models, the effects of this compound vary with different dosages. For example, a study showed that this compound significantly inhibited tumor growth in a PC9T790M xenograft model .

Metabolic Pathways

This compound is involved in several metabolic pathways. It is mainly metabolized by the CYP3A enzyme in humans . Among the metabolites produced by this compound, AZ5104, and AZ7550, which are demethylated, are most vital .

Transport and Distribution

This compound is transported and distributed within cells and tissues. It significantly increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter .

Subcellular Localization

It has been observed that this compound significantly sensitizes both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs .

準備方法

合成経路と反応条件

オシメルチニブの合成は、市販の出発物質から始まり、複数の段階で行われます。主要な段階には、コア構造の形成、続いて様々な官能基の導入が含まれます。合成経路は通常、以下を含みます。

工業生産方法

オシメルチニブの工業生産には、高収率と高純度を確保するために合成経路を最適化することが含まれます。プロセスには通常、以下が含まれます。

化学反応解析

反応の種類

オシメルチニブは、以下を含む様々な化学反応を起こします。

一般的な試薬と条件

主な生成物

これらの反応から生成される主な生成物には、水酸化代謝物と脱メチル化代謝物が含まれ、主に糞便と尿によって排泄されます .

科学研究への応用

オシメルチニブは、以下を含む幅広い科学研究への応用があります。

化学反応の分析

Types of Reactions

Osimertinib undergoes various chemical reactions, including:

Common Reagents and Conditions

Major Products

The major products formed from these reactions include hydroxylated and demethylated metabolites, which are primarily excreted through feces and urine .

科学的研究の応用

Osimertinib has a wide range of scientific research applications, including:

特性

IUPAC Name

N-[2-[2-(dimethylamino)ethyl-methylamino]-4-methoxy-5-[[4-(1-methylindol-3-yl)pyrimidin-2-yl]amino]phenyl]prop-2-enamide
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C28H33N7O2/c1-7-27(36)30-22-16-23(26(37-6)17-25(22)34(4)15-14-33(2)3)32-28-29-13-12-21(31-28)20-18-35(5)24-11-9-8-10-19(20)24/h7-13,16-18H,1,14-15H2,2-6H3,(H,30,36)(H,29,31,32)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

DUYJMQONPNNFPI-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CN1C=C(C2=CC=CC=C21)C3=NC(=NC=C3)NC4=C(C=C(C(=C4)NC(=O)C=C)N(C)CCN(C)C)OC
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C28H33N7O2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID501025961
Record name Osimertinib
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID501025961
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

499.6 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Mechanism of Action

Osimertinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that binds to certain mutant forms of EGFR (T790M, L858R, and exon 19 deletion) that predominate in non-small cell lung cancer (NSCLC) tumours following treatment with first-line EGFR-TKIs. As a third-generation tyrosine kinase inhibitor, osimertinib is specific for the gate-keeper T790M mutation which increases ATP binding activity to EGFR and results in poor prognosis for late-stage disease. Furthermore, osimertinib has been shown to spare wild-type EGFR during therapy, thereby reducing non-specific binding and limiting toxicity. Compared to wild-type EGFR, osimertinib has 200 times higher affinity for EGFR molecules with the L858R/T790M mutation _in vitro_.
Record name Osimertinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB09330
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

1421373-65-0
Record name Osimertinib
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=1421373-65-0
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Osimertinib [USAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=1421373650
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Osimertinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB09330
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Osimertinib
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID501025961
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name OSIMERTINIB
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/3C06JJ0Z2O
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods I

Procedure details

A solution of acryloyl chloride (34.5 mg, 0.38 mmol) in CH2Cl2 (1 mL) was added dropwise to a stirred mixture of N1-(2-dimethylaminoethyl)-5-methoxy-N1-methyl-N4-[4-(1-methylindol-3-yl)pyrimidin-2-yl]benzene-1,2,4-triamine (Intermediate 100, 170 mg, 0.38 mmol) and DIPEA (0.073 mL, 0.42 mmol) in CH2Cl2 (5 mL), which was cooled in an ice/water bath. The mixture was stirred for 1.5 h and then diluted with CH2Cl2 (25 mL) and washed with sat.NaHCO3 (50 mL). The aqueous washes were extracted with CH2Cl2 (2×25 mL). The combined organic solutions were dried (MgSO4) and concentrated in vacuo. Purification by FCC, eluting with 0-4% 7N methanolic ammonia in CH2Cl2 gave the title compound (75 mg, 39%) as a cream solid after trituration with diethyl ether; 1H NMR: 2.21 (6H, s), 2.29 (2H, t), 2.72 (3H, s), 2.89 (2H, t), 3.86 (3H, s), 3.92 (3H, s), 5.77 (1H, dd), 6.27 (1H, dd), 6.43 (1H, dd), 7.04 (1H, s), 7.15 (1H, t), 7.20-7.27 (2H, m), 7.53 (1H, d), 7.91 (1H, s), 8.24 (1H, d), 8.33 (1H, d), 8.68 (1H, s), 9.14 (1H, s), 10.22 (1H, s); m/z: ES+ MH+ 500.42.
Quantity
34.5 mg
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
0.073 mL
Type
reactant
Reaction Step One
Quantity
1 mL
Type
solvent
Reaction Step One
Quantity
5 mL
Type
solvent
Reaction Step One
Quantity
25 mL
Type
solvent
Reaction Step Two
Yield
39%

Synthesis routes and methods II

Procedure details

To a stirred solution of N1-(2-dimethylaminoethyl)-5-methoxy-N1-methyl-N4-[4-(1-methylindol-3-yl)pyrimidin-2-yl]benzene-1,2,4-triamine (Intermediate 100, 10 g, 21.32 mmol) in THF (95 mL) and water (9.5 mL) at 0° C. was added the 3-chloropropanoyl chloride (3.28 g, 25.59 mmol). The mixture was stirred at r.t. for 15 minutes then NaOH (3.48 g, 85.28 mmol) was added. The resulting mixture was heated to 65° C. for 10 h. The mixture was then cooled to r.t. and CH3OH (40 mL) and water (70 mL) were added. The resulting mixture was stirred overnight. The resulting solid was collected by filtration, washed with water (25 mL) and dried at 50° C. for 12 h to give the title compound (7.0 g, 94%) as a solid form identified herein as polymorphic Form D. 1H NMR: 2.69 (3H, s) 2.83 (6H, d) 3.35 (4H, s) 3.84 (3H, s) 3.91 (3H, s) 5.75 (1H, d) 6.28 (1H, d) 6.67 (1H, dd) 7.05-7.23 (2H, m) 7.29 (1H, t) 7.43 (1H, d) 7.56 (1H, d) 8.21 (2H, s) 8.81 (1H, s) 9.47 (1H, s) 9.52 (1H, s) ES+ MH+ 500.26.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
3.28 g
Type
reactant
Reaction Step One
Name
Quantity
95 mL
Type
solvent
Reaction Step One
Name
Quantity
9.5 mL
Type
solvent
Reaction Step One
Name
Quantity
3.48 g
Type
reactant
Reaction Step Two
Name
Quantity
40 mL
Type
reactant
Reaction Step Three
Name
Quantity
70 mL
Type
solvent
Reaction Step Three
Yield
94%

Synthesis routes and methods III

Procedure details

To a stirred solution of 3-chloro-N-[2-[2-dimethylaminoethyl(methyl)amino]-4-methoxy-5-[[4-(1-methylindol-3-yl)pyrimidin-2-yl]amino]phenyl]propanamide (Intermediate 174, 31.5 g, 58.76 mmol) in acetonitrile (310 mL) was added triethylamine (17.84 g, 176.28 mmol) at r.t. The resulting mixture was heated to 80° C. for 6 h then cooled to r.t. Water (130 mL) was then added and the mixture stirred for 12 h. The mixture was then filtered, washed with a mixture of water and acetonitrile (160 mL, 1:1) and dried at 50° C. for overnight to give the title compound (19.2 g, 94%) as a solid form identified herein as polymorphic form D. 1H NMR: 2.69 (3H, s), 2.83 (6H, d), 3.35 (4H, s), 3.84 (3H, s), 3.91 (3H, s), 5.75 (1H, d), 6.28 (1H, d), 6.67 (1H, dd), 7.05-7.23 (2H, m), 7.29 (1H, t), 7.43 (1H, d), 7.56 (1H, d), 8.21 (2H, s), 8.81 (1H, s), 9.47 (1H, s), 9.52 (1H, s), m/z: ES+ MH+ 500.26.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
17.84 g
Type
reactant
Reaction Step One
Quantity
310 mL
Type
solvent
Reaction Step One
Name
Quantity
130 mL
Type
reactant
Reaction Step Two
Yield
94%
Customer
Q & A

Q1: What is the primary target of osimertinib and how does it interact with this target?

A1: this compound is designed to irreversibly bind to EGFR, specifically targeting both EGFR-TKI-sensitizing mutations and the EGFR T790M resistance mutation. [] This covalent binding inhibits the kinase activity of EGFR. [, ]

Q2: What are the downstream effects of this compound binding to EGFR?

A2: this compound binding to EGFR blocks downstream signaling pathways, including PI3K-AKT and MAPK-ERK, crucial for cancer cell growth and survival. [, , ] This inhibition leads to decreased cell proliferation, increased apoptosis, and reduced tumor growth. [, , ]

Q3: Does this compound affect other targets besides EGFR?

A3: While highly selective for EGFR, this compound can also inhibit HER2 (ERBB2) to a lesser extent. [] This off-target effect might contribute to some of its side effects.

Q4: What is the molecular formula and weight of this compound?

A4: The provided research articles do not explicitly mention the molecular formula or weight of this compound.

Q5: Is there any spectroscopic data available for this compound in these studies?

A5: The provided research articles do not include spectroscopic data for this compound.

Q6: How stable is this compound under various storage conditions?

A6: The research articles don’t elaborate on specific stability data for this compound under various conditions.

Q7: Does this compound have any catalytic properties as described in the research?

A7: this compound acts as an inhibitor, not a catalyst. Its primary mechanism involves irreversible binding to EGFR, blocking its kinase activity rather than catalyzing a reaction.

Q8: Have any computational chemistry studies been performed on this compound?

A8: The provided research articles do not discuss computational chemistry studies conducted on this compound.

Q9: How do structural modifications of this compound impact its activity and selectivity?

A9: The research articles primarily focus on this compound itself and do not delve into the SAR of the compound through structural modifications.

Q10: Are there any specific formulation strategies used to improve the stability, solubility, or bioavailability of this compound?

A10: The research articles do not provide details on the formulation strategies employed for this compound.

Q11: Do the articles mention any specific SHE regulations regarding this compound development or manufacturing?

A11: The provided research articles primarily focus on the clinical and biological aspects of this compound and do not explicitly discuss SHE regulations.

Q12: How is this compound absorbed, distributed, metabolized, and excreted (ADME) in the body?

A12: this compound is primarily metabolized by CYP3A enzymes. [] Following oral administration, it is extensively distributed throughout the body and eliminated mainly through the fecal route. []

Q13: Does food or gastric pH affect the pharmacokinetics of this compound?

A13: Research indicates that co-administration with food or omeprazole, a gastric pH modifier, does not significantly impact the exposure of this compound. []

Q14: What in vitro models have been used to study this compound efficacy?

A14: Various EGFR-mutant NSCLC cell lines, including H1975, PC-9, HCC827, and HCC4006, have been utilized to investigate the efficacy of this compound in vitro. [, , , , ]

Q15: What in vivo models have been used to assess this compound's efficacy?

A15: this compound's effectiveness has been evaluated in vivo using xenograft and patient-derived xenograft (PDX) models of EGFR-mutant NSCLC. [, , , ] These models help to understand the drug's impact on tumor growth and metastasis.

Q16: Have clinical trials been conducted to evaluate the efficacy of this compound?

A16: Yes, several clinical trials, including the FLAURA and AURA3 trials, have demonstrated the efficacy of this compound in treating EGFR-mutant NSCLC. [, , , , , , , ]

Q17: What is the efficacy of this compound against brain metastases?

A17: this compound demonstrates efficacy against brain metastases, as observed in clinical trials and case studies. [, , , ] It shows promising activity in controlling tumor growth and improving progression-free survival in patients with EGFR-mutant NSCLC with brain metastases.

Q18: Can this compound be combined with other therapies for enhanced efficacy?

A18: Research suggests potential synergistic effects when this compound is combined with other therapies like bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF). [, , ]

Q19: What are the known mechanisms of resistance to this compound?

A19: Several resistance mechanisms to this compound have been identified, including: * EGFR-dependent mechanisms: The emergence of the EGFR C797S mutation is a significant mechanism of acquired resistance. [, ] * EGFR-independent mechanisms: These include MET amplification, epithelial-to-mesenchymal transition (EMT), AXL upregulation, HER2 amplification, and mutations in KRAS, BRAF, and PIK3CA. [, , , , , ]

Q20: Is there any evidence of cross-resistance between this compound and other anticancer drugs?

A20: While not extensively discussed in the provided articles, research suggests that resistance mechanisms like MET amplification can confer cross-resistance to multiple TKIs, including this compound. [, ]

Q21: What are the common adverse events associated with this compound treatment?

A21: Common adverse events reported with this compound include paronychia, QTc prolongation, and gastrointestinal issues like diarrhea. [, , ]

Q22: Are there any specific cardiac safety concerns associated with this compound?

A22: QTc prolongation is a known cardiac safety concern with this compound. [, ] Additionally, cases of congestive heart failure and decreased left ventricular ejection fraction have been reported, emphasizing the need for cardiac monitoring during treatment. [, ]

Q23: Are there any specific drug delivery systems or targeting strategies being explored to enhance this compound delivery to tumor sites?

A23: The provided research articles do not delve into specific drug delivery systems or targeting strategies for this compound.

Q24: What analytical techniques are used to measure this compound and its metabolites in biological samples?

A24: Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) is commonly used to quantify this compound and its metabolites in biological samples. [, ]

Q25: Are there any specific techniques used for detecting resistance mechanisms like EGFR mutations?

A25: Next-generation sequencing (NGS) is widely employed to detect EGFR mutations, including T790M and C797S, which are crucial for predicting this compound response and monitoring resistance. [, , , ]

Q26: Do the research articles address the environmental impact or degradation of this compound?

A26: The provided research articles focus on clinical and biological aspects of this compound and do not discuss its environmental impact or degradation.

Q27: What is known about the dissolution rate and solubility of this compound in different media?

A27: The research articles don't provide specific details regarding the dissolution rate and solubility of this compound in various media.

Q28: Are there any details provided on the validation of analytical methods used for this compound analysis?

A28: The provided research articles do not elaborate on the validation procedures of the analytical methods used for this compound quantification.

Q29: Do the research articles mention specific quality control measures for this compound manufacturing and distribution?

A29: The research articles primarily focus on clinical research and do not delve into the specifics of quality control measures implemented during this compound manufacturing and distribution.

Q30: Is there any information on the potential of this compound to induce an immune response?

A30: The provided research articles do not discuss the potential immunogenicity of this compound.

Q31: Do the research articles provide insights into interactions between this compound and drug transporters?

A31: The research articles do not provide information on interactions between this compound and drug transporters.

Q32: Does this compound induce or inhibit drug-metabolizing enzymes?

A32: The research articles primarily focus on the metabolism of this compound by CYP3A enzymes and do not mention if this compound itself influences the activity of drug-metabolizing enzymes. [, ]

Q33: Is there any information available on the biocompatibility or biodegradability of this compound?

A33: The research articles do not provide information on the biocompatibility or biodegradability of this compound.

Q34: Are there any alternative treatments or compounds with similar mechanisms of action to this compound?

A34: Other third-generation EGFR-TKIs are being investigated, although this compound remains a prominent treatment option. [, , ] Furthermore, research explores combining this compound with other targeted therapies or chemotherapy to overcome resistance and improve outcomes. [, , , ]

Q35: Do the research articles address strategies for recycling or managing waste generated during this compound manufacturing or administration?

A35: The provided research articles do not discuss the recycling or waste management aspects associated with this compound.

Q36: Do the research articles highlight any specific research infrastructure or resources essential for this compound research?

A36: The research articles implicitly emphasize the significance of resources like:

  • Cell lines and PDX models: These are vital tools for studying this compound's efficacy and investigating resistance mechanisms in vitro and in vivo. [, , , , , , ]
  • NGS technology: This technology plays a crucial role in identifying genetic alterations, such as EGFR mutations, essential for predicting drug response and monitoring resistance. [, , , ]

Q37: How has the research on this compound evolved, and what are the key milestones in its development as a lung cancer treatment?

A37: this compound's development represents a significant milestone in the treatment of EGFR-mutant NSCLC, particularly for patients who develop resistance to first- and second-generation EGFR-TKIs. [, , , ] Key milestones include its initial approval for use in T790M-positive NSCLC and its subsequent approval for first-line treatment of EGFR-mutant advanced NSCLC. [, , ] Current research focuses on overcoming resistance mechanisms and improving long-term outcomes for patients.

Q38: What are some examples of cross-disciplinary research and collaboration in the development and application of this compound?

A38: this compound research involves collaboration between various disciplines, including:

  • Oncology and Pharmacology: Clinicians and pharmacologists work together to evaluate the efficacy and safety of this compound in clinical trials. [, , , , , , , ]
  • Molecular Biology and Genetics: Researchers investigate the molecular mechanisms of this compound action and resistance, relying on techniques like NGS to identify key genetic alterations. [, , , ]
  • Biochemistry and Pharmacology: Scientists study the interactions between this compound and its target, EGFR, as well as its ADME profile. [, ]

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。