Risperidone E-Oxime
概述
描述
Risperidone E-Oxime is a complex organic compound with potential applications in various fields such as chemistry, biology, medicine, and industry. This compound is characterized by its unique structure, which includes a difluorophenyl group, a piperidine ring, and a tetrahydropyridopyrimidinone core.
准备方法
Synthetic Routes and Reaction Conditions
The synthesis of Risperidone E-Oxime typically involves multiple steps, including the formation of the piperidine ring, the introduction of the difluorophenyl group, and the construction of the tetrahydropyridopyrimidinone core. Specific reaction conditions, such as temperature, pressure, and the use of catalysts, are crucial for the successful synthesis of this compound.
Industrial Production Methods
Industrial production methods for this compound may involve large-scale synthesis techniques, including continuous flow reactors and automated synthesis systems. These methods aim to optimize yield, purity, and cost-effectiveness while ensuring safety and environmental compliance.
化学反应分析
Types of Reactions
Risperidone E-Oxime can undergo various chemical reactions, including:
Oxidation: The compound can be oxidized to form different oxidation states.
Reduction: Reduction reactions can modify the functional groups within the compound.
Substitution: Substitution reactions can introduce new functional groups or replace existing ones.
Common Reagents and Conditions
Common reagents used in these reactions include oxidizing agents (e.g., potassium permanganate), reducing agents (e.g., sodium borohydride), and various nucleophiles and electrophiles for substitution reactions. Reaction conditions such as solvent choice, temperature, and pH play a significant role in determining the outcome of these reactions.
Major Products Formed
The major products formed from these reactions depend on the specific reagents and conditions used. For example, oxidation may yield different oxidized derivatives, while substitution reactions can produce a variety of substituted analogs.
科学研究应用
Chemistry
In chemistry, this compound can be used as a building block for the synthesis of more complex molecules. Its unique structure allows for the exploration of new chemical reactions and pathways.
Biology
In biological research, this compound may be used to study its interactions with various biological targets, such as enzymes and receptors. Its potential as a biochemical probe can provide insights into cellular processes and mechanisms.
Medicine
In medicine, Risperidone E-Oxime may have therapeutic potential due to its ability to interact with specific molecular targets. Research into its pharmacological properties could lead to the development of new drugs.
Industry
In industry, this compound can be used in the development of new materials, such as polymers and coatings. Its unique chemical properties may enhance the performance and durability of these materials.
作用机制
The mechanism of action of Risperidone E-Oxime involves its interaction with specific molecular targets, such as enzymes or receptors. These interactions can modulate various biochemical pathways, leading to the compound’s observed effects. The exact molecular targets and pathways involved depend on the specific application and context of use.
相似化合物的比较
Similar Compounds
- 2-{2-[(4-Methoxyphenoxy)methyl]phenyl}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
- N-(4-Ethoxybenzyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzenamine
- Spiropyrans
Uniqueness
Compared to these similar compounds, Risperidone E-Oxime stands out due to its unique combination of functional groups and structural features
属性
分子式 |
C23H28F2N4O2 |
---|---|
分子量 |
430.5 g/mol |
IUPAC 名称 |
3-[2-[4-[C-(2,4-difluorophenyl)-N-hydroxycarbonimidoyl]piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one |
InChI |
InChI=1S/C23H28F2N4O2/c1-15-18(23(30)29-10-3-2-4-21(29)26-15)9-13-28-11-7-16(8-12-28)22(27-31)19-6-5-17(24)14-20(19)25/h5-6,14,16,31H,2-4,7-13H2,1H3 |
InChI 键 |
BRCINVRBDDVLDW-UHFFFAOYSA-N |
规范 SMILES |
CC1=C(C(=O)N2CCCCC2=N1)CCN3CCC(CC3)C(=NO)C4=C(C=C(C=C4)F)F |
产品来源 |
United States |
Synthesis routes and methods I
Procedure details
Synthesis routes and methods II
Procedure details
Synthesis routes and methods III
Procedure details
体外研究产品的免责声明和信息
请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。