molecular formula C16H21NO2 B1214883 普萘洛尔 CAS No. 525-66-6

普萘洛尔

货号: B1214883
CAS 编号: 525-66-6
分子量: 259.34 g/mol
InChI 键: AQHHHDLHHXJYJD-UHFFFAOYSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

描述

普萘洛尔于 1962 年首次获得专利,并于 1964 年获准用于医疗 。普萘洛尔广泛用于治疗各种心血管疾病,例如高血压、心绞痛和心律失常。 此外,它还用于治疗焦虑症、预防偏头痛和治疗震颤 .

生化分析

Biochemical Properties

Propranolol plays a significant role in biochemical reactions by interacting with various enzymes, proteins, and other biomolecules. It primarily binds to beta-adrenergic receptors, inhibiting the action of catecholamines like adrenaline and noradrenaline. This interaction leads to a decrease in cyclic adenosine monophosphate (cAMP) levels, which in turn reduces the activity of protein kinase A (PKA). Propranolol also interacts with cytochrome P450 enzymes, particularly CYP2D6 and CYP1A2, which are involved in its metabolism .

Cellular Effects

Propranolol exerts various effects on different types of cells and cellular processes. In cardiac cells, it reduces heart rate and contractility by blocking beta-adrenergic receptors, leading to decreased calcium influx. In neuronal cells, propranolol can cross the blood-brain barrier and influence neurotransmitter release, thereby reducing anxiety and preventing migraines. Additionally, propranolol affects cell signaling pathways by inhibiting the cAMP-PKA pathway, which impacts gene expression and cellular metabolism .

Molecular Mechanism

The molecular mechanism of propranolol involves its binding to beta-adrenergic receptors, which prevents the activation of these receptors by catecholamines. This inhibition leads to a decrease in cAMP levels and subsequent reduction in PKA activity. Propranolol also inhibits the activity of certain cytochrome P450 enzymes, affecting its own metabolism and the metabolism of other drugs. Furthermore, propranolol can modulate gene expression by influencing transcription factors and other regulatory proteins .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of propranolol change over time due to its stability and degradation. Propranolol is relatively stable under physiological conditions, but it can undergo degradation in the presence of light and heat. Long-term studies have shown that propranolol can have sustained effects on cellular function, including prolonged inhibition of beta-adrenergic receptors and persistent changes in gene expression. These effects are observed in both in vitro and in vivo studies .

Dosage Effects in Animal Models

The effects of propranolol vary with different dosages in animal models. At low doses, propranolol effectively reduces heart rate and blood pressure without significant adverse effects. At higher doses, propranolol can cause bradycardia, hypotension, and other toxic effects. Threshold effects have been observed, where a certain dosage is required to achieve the desired therapeutic effect. In animal studies, propranolol has been shown to affect various physiological parameters, including heart rate, blood pressure, and metabolic rate .

Metabolic Pathways

Propranolol is metabolized primarily in the liver through three main pathways: aromatic hydroxylation, N-dealkylation, and direct glucuronidation. The enzymes involved in these pathways include CYP2D6 and CYP1A2. The primary metabolites of propranolol are propranolol glucuronide, naphthyloxylactic acid, and sulfate and glucuronic acid conjugates of 4-hydroxy propranolol. These metabolites possess varying degrees of beta-adrenergic receptor blocking activity and can influence the overall pharmacological effects of propranolol .

Transport and Distribution

Propranolol is transported and distributed within cells and tissues through various mechanisms. It is highly lipophilic, allowing it to cross cell membranes easily and accumulate in tissues with high lipid content, such as the brain and adipose tissue. Propranolol is also transported by specific binding proteins and transporters, which facilitate its distribution within the body. The localization and accumulation of propranolol can affect its therapeutic efficacy and potential side effects .

Subcellular Localization

The subcellular localization of propranolol is influenced by its lipophilicity and interactions with cellular components. Propranolol can localize to various subcellular compartments, including the plasma membrane, mitochondria, and endoplasmic reticulum. Its activity and function can be affected by post-translational modifications and targeting signals that direct it to specific organelles. The subcellular localization of propranolol plays a crucial role in its overall pharmacological effects and therapeutic outcomes .

准备方法

普萘洛尔可以通过多种合成路线合成。一种常见的方法是让萘酚与环氧氯丙烷反应生成 3-(1-萘氧基)-1,2-环氧丙烷。 然后将此中间体与异丙胺反应生成普萘洛尔 该反应通常需要相转移催化剂和碱性介质来促进反应 工业生产方法通常涉及类似步骤,但针对大规模合成进行了优化,确保高产率和高纯度 .

化学反应分析

属性

IUPAC Name

1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C16H21NO2/c1-12(2)17-10-14(18)11-19-16-9-5-7-13-6-3-4-8-15(13)16/h3-9,12,14,17-18H,10-11H2,1-2H3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

AQHHHDLHHXJYJD-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C16H21NO2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID6023525
Record name Propranolol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6023525
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

259.34 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

0.0617 mg/L at 25 °C
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Propranolol is a nonselective β-adrenergic receptor antagonist. Blocking of these receptors leads to vasoconstriction, inhibition of angiogenic factors like vascular endothelial growth factor (VEGF) and basic growth factor of fibroblasts (bFGF), induction of apoptosis of endothelial cells, as well as down regulation of the renin-angiotensin-aldosterone system.
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

525-66-6, 13013-17-7
Record name Propranolol
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=525-66-6
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name racemic-Propranolol
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000525666
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Propranolol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6023525
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name (±)-1-(isopropylamino)-3-(naphthyloxy)propan-2-ol
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.032.592
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name Propranolol
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.007.618
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name PROPRANOLOL
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/9Y8NXQ24VQ
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

96 °C
Record name Propranolol
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00571
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Propranolol
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0001849
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

40.0 g of N-pyrrolidone, 20.0 g of propranolol HCl and 20.0 g of polyvinylpyrrolidone with a K value of 90 are dissolved in 40.0 g of demineralized water. This solution is incorporated into 333.3 g of 30% strength polyvinyl acetate dispersion of the invention while stirring. A 200 μm knife is used to spread this mixture onto a 40 μm-thick polyester sheet, which is then dried at 60° C. The spreading process is repeated once more to increase the layer thickness. After covering the polymer layer with a siliconized released liner it is possible to punch out any desired shapes.
Name
N-pyrrolidone
Quantity
40 g
Type
reactant
Reaction Step One
Quantity
20 g
Type
reactant
Reaction Step One
[Compound]
Name
polyvinylpyrrolidone
Quantity
20 g
Type
reactant
Reaction Step One
[Compound]
Name
90
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
40 g
Type
solvent
Reaction Step One
[Compound]
Name
polyvinyl acetate
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
[Compound]
Name
polyester
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Three

Synthesis routes and methods II

Procedure details

2.55 ml of (1-methylethyl)amine (0.0297 mol) are mixed with 1.25 ml of H2O and the mixture is then stirred with 5 g of 1-(1-naphthyloxy)-2,3-epoxypropane (0.0249 mol) and reacted at room temperature for 23 hours.
Quantity
2.55 mL
Type
reactant
Reaction Step One
Name
Quantity
1.25 mL
Type
solvent
Reaction Step One
Quantity
5 g
Type
reactant
Reaction Step Two

Synthesis routes and methods III

Procedure details

To a mixture of 11.5 parts of 1-(iso-propyl)-3-azetidinol and 15.8 parts of α-naphthol 0.2 part of 182°- potassium hydroxide was added, and the mixture was heated under nitrogen gas at 160° C. for 20 hours. The reaction mixture was cooled and then extracted with ether. The ether extract was washed with 2N-NaOH aqueous solution and then with water. The liquor was dried over anhydrous sodium sulfate and the solvent was distilled off. The residue was recrystallized for cyclohexane or subjected to distillation under reduced pressure. As a result 19.6 parts of 1-(α-naphthoxy)-3-(isopropylamino)-2-propanol having a melting point of 94°-96° C. and a boiling point of 158°-159° C. under 2.5 mm Hg were obtained. The yield was 76%. The residue of infra-red spectrum analysis of the product are as follows:
[Compound]
Name
11.5
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One

Synthesis routes and methods IV

Procedure details

1-(isopropyl)-3-azetidinol and α-naphthol were reacted in the same manner as in Example 6 to form 1-(α-naphthoxy)-3-(iso-propylamino)-2-propanol. Then the propanol was dissolved in anhydrous ether and was converted to a hydrochloride by blowing a hydrochloric acid gas into the resulting solution. As a result 1-(α-naphthoxy)-3-(isopropylamino)-2-propanol hydrochloride melting at 162°-164° C was obtained.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Propranolol
Reactant of Route 2
Reactant of Route 2
Reactant of Route 2
Propranolol
Reactant of Route 3
Reactant of Route 3
Propranolol
Reactant of Route 4
Reactant of Route 4
Propranolol
Reactant of Route 5
Reactant of Route 5
Propranolol
Reactant of Route 6
Reactant of Route 6
Propranolol

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。