molecular formula C25H25N7O3 B194492 达比加群 CAS No. 211914-51-1

达比加群

货号: B194492
CAS 编号: 211914-51-1
分子量: 471.5 g/mol
InChI 键: YBSJFWOBGCMAKL-UHFFFAOYSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

生化分析

Biochemical Properties

Dabigatran is a potent, competitive, and reversible inhibitor of thrombin, inhibiting both thrombin activity and generation . It interacts with thrombin, a plasma serine protease that plays a central role in coagulation and hemostasis . Dabigatran binds to the active site on the thrombin molecule, preventing thrombin-mediated activation of coagulation factors .

Cellular Effects

Dabigatran has been shown to suppress the activation of astrocytes, cells that play a key role in the central nervous system . The underlying mechanisms are related to the activity of protease-activated receptor-1 (PAR-1), sphingosine-1-phosphate (S1P), and sphingosine kinases (SphKs) .

Molecular Mechanism

Dabigatran exerts its effects at the molecular level by directly inhibiting the conversion of fibrinogen to fibrin by thrombin, impairing the clotting process and acting as an anticoagulant . It binds reversibly to the active site on the thrombin molecule, preventing thrombin-mediated activation of coagulation factors .

Temporal Effects in Laboratory Settings

Dabigatran has a predictable pharmacokinetic profile, allowing for a fixed-dose regimen without the need for coagulation monitoring . Peak plasma concentrations of dabigatran are reached approximately 2 hours after oral administration . The elimination half-life is 12 to 14 hours, with clearance predominantly occurring via renal excretion of unchanged drug .

Dosage Effects in Animal Models

In animal models, dabigatran has been shown to reduce atherosclerotic lesion size along with enhanced plaque stability, improved endothelial function, and reduced oxidative stress . In a study using sheep as a model, dabigatran was found to provide acceptable anticoagulation similar to heparin to prevent thrombosis .

Metabolic Pathways

Dabigatran is metabolized primarily by esterases . It is not metabolized by cytochrome P450 isoenzymes . The predominant metabolic reaction is esterase-mediated hydrolysis of dabigatran etexilate to dabigatran .

Transport and Distribution

Dabigatran etexilate is a substrate of esterases and P-glycoprotein (P-gp) . After oral administration, it is rapidly absorbed and converted to its active form, dabigatran .

Subcellular Localization

The subcellular localization of dabigatran is not explicitly mentioned in the literature. Given its role as a direct thrombin inhibitor, it is likely to be found wherever thrombin is present in the cell. Thrombin is a serine protease that plays a central role in coagulation and hemostasis , suggesting that dabigatran would be localized in areas of the cell involved in these processes.

属性

IUPAC Name

3-[[2-[(4-carbamimidoylanilino)methyl]-1-methylbenzimidazole-5-carbonyl]-pyridin-2-ylamino]propanoic acid
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C25H25N7O3/c1-31-20-10-7-17(25(35)32(13-11-23(33)34)21-4-2-3-12-28-21)14-19(20)30-22(31)15-29-18-8-5-16(6-9-18)24(26)27/h2-10,12,14,29H,11,13,15H2,1H3,(H3,26,27)(H,33,34)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

YBSJFWOBGCMAKL-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CN1C2=C(C=C(C=C2)C(=O)N(CCC(=O)O)C3=CC=CC=N3)N=C1CNC4=CC=C(C=C4)C(=N)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C25H25N7O3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID50175419
Record name Dabigatran
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID50175419
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

471.5 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Mechanism of Action

Dabigatran and its acyl glucuronides are competitive, direct thrombin inhibitors. Because thrombin (serine protease) enables the conversion of fibrinogen into fibrin during the coagulation cascade, its inhibition prevents the development of a thrombus. Both free and clot-bound thrombin, and thrombin-induced platelet aggregation are inhibited by the active moieties., ... To evaluate the profibrinolytic effect of dabigatran, a new, direct thrombin inhibitor, using different in vitro models. The resistance of tissue factor-induced plasma clots to fibrinolysis by exogenous tissue-type plasminogen activator (t-PA) (turbidimetric method) was reduced by dabigatran in a concentration-dependent manner, with > or = 50% shortening of lysis time at clinically relevant concentrations (1-2 um). A similar effect was observed in the presence of low (0.1 and 1 nm) but not high (10 nm) concentrations of thrombomodulin. Acceleration of clot lysis by dabigatran was associated with a reduction in TAFI activation and thrombin generation, and was largely, although not completely, negated by an inhibitor of activated TAFI, potato tuber carboxypeptidase inhibitor. The assessment of the viscoelastic properties of clots showed that those generated in the presence of dabigatran were more permeable, were less rigid, and consisted of thicker fibers. The impact of these physical changes on fibrinolysis was investigated using a model under flow conditions, which demonstrated that dabigatran made the clots markedly more susceptible to flowing t-PA, by a mechanism that was largely TAFI-independent. Dabigatran, at clinically relevant concentrations, enhances the susceptibility of plasma clots to t-PA-induced lysis by reducing TAFI activation and by altering the clot structure. These mechanisms might contribute to the antithrombotic activity of the drug.
Record name Dabigatran
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/8062
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

White crystals

CAS No.

211914-51-1
Record name Dabigatran
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=211914-51-1
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Dabigatran [USAN:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0211914511
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Dabigatran
Source DrugBank
URL https://www.drugbank.ca/drugs/DB14726
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Dabigatran
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID50175419
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Dabigatran
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/information-on-chemicals
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name DABIGATRAN
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/I0VM4M70GC
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Dabigatran
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/8062
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Melting Point

276-277 °C
Record name Dabigatran
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/8062
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Synthesis routes and methods I

Procedure details

Prepared analogously to Example 26 from 1-methyl-2-[N-(4-amidinophenyl)aminomethyl]benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2-ethoxycarbonylethyl)amide hydrochloride and sodium hydroxide solution. Yield: 91% of theory, C25H25N7O3 (471.5); EKA mass spectrum: (M+H)+=472; (M+H+Na)++=247.6; (M+2H)++=236.7; (M+2Na)++=258.6.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
[Compound]
Name
C25H25N7O3
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two

Synthesis routes and methods II

Procedure details

Prepared analogously to Example 26 from 1-methyl-2-[N-(4-amidinophenyl)-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2-ethoxycarbonylethyl)-amide-hydrochloride and sodium hydroxide solution.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Dabigatran
Reactant of Route 2
Dabigatran
Reactant of Route 3
Reactant of Route 3
Dabigatran
Reactant of Route 4
Reactant of Route 4
Dabigatran
Reactant of Route 5
Dabigatran
Reactant of Route 6
Dabigatran

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。