Welcome to the BenchChem Online Store!
molecular formula C8H13NO4 B144351 Ethyl 2-(4-hydroxy-2-oxopyrrolidin-1-yl)acetate CAS No. 62613-81-4

Ethyl 2-(4-hydroxy-2-oxopyrrolidin-1-yl)acetate

Cat. No. B144351
M. Wt: 187.19 g/mol
InChI Key: YDBONCLBTWFUPF-UHFFFAOYSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.
Patent
US04629797

Procedure details

A solution of 7.1 g ethyl 4-hydroxy-2-oxo-1-pyrrolidineacetate obtained in Example 12, in 7.1 ml ammonia solution (d25 =0.90) is stirred at ambient temperature for 15 h. It is then diluted with 140 ml acetone and the mixture is stirred at ambient temperature until the gum that precipitates solidifies into white crystals. On filtering in vacuo and drying, 4-hydroxy-2-oxo-1-pyrrolidineacetamide is obtained, m.p. 160°-162° C.
Quantity
7.1 g
Type
reactant
Reaction Step One
Quantity
7.1 mL
Type
reactant
Reaction Step One
Quantity
140 mL
Type
solvent
Reaction Step Two

Identifiers

REACTION_CXSMILES
[OH:1][CH:2]1[CH2:6][N:5]([CH2:7][C:8](OCC)=[O:9])[C:4](=[O:13])[CH2:3]1.[NH3:14]>CC(C)=O>[OH:1][CH:2]1[CH2:6][N:5]([CH2:7][C:8]([NH2:14])=[O:9])[C:4](=[O:13])[CH2:3]1

Inputs

Step One
Name
Quantity
7.1 g
Type
reactant
Smiles
OC1CC(N(C1)CC(=O)OCC)=O
Name
Quantity
7.1 mL
Type
reactant
Smiles
N
Step Two
Name
Quantity
140 mL
Type
solvent
Smiles
CC(=O)C

Conditions

Temperature
Control Type
AMBIENT
Stirring
Type
CUSTOM
Details
the mixture is stirred at ambient temperature until the gum
Rate
UNSPECIFIED
RPM
0
Other
Conditions are dynamic
1
Details
See reaction.notes.procedure_details.

Workups

CUSTOM
Type
CUSTOM
Details
that precipitates
FILTRATION
Type
FILTRATION
Details
On filtering in vacuo
CUSTOM
Type
CUSTOM
Details
drying

Outcomes

Product
Name
Type
product
Smiles
OC1CC(N(C1)CC(=O)N)=O

Source

Source
Open Reaction Database (ORD)
Description
The Open Reaction Database (ORD) is an open-access schema and infrastructure for structuring and sharing organic reaction data, including a centralized data repository. The ORD schema supports conventional and emerging technologies, from benchtop reactions to automated high-throughput experiments and flow chemistry. Our vision is that a consistent data representation and infrastructure to support data sharing will enable downstream applications that will greatly improve the state of the art with respect to computer-aided synthesis planning, reaction prediction, and other predictive chemistry tasks.
© Copyright 2024 BenchChem. All Rights Reserved.