molecular formula C10H10N4O2S B1682646 Sulfadiazin CAS No. 68-35-9

Sulfadiazin

Katalognummer: B1682646
CAS-Nummer: 68-35-9
Molekulargewicht: 250.28 g/mol
InChI-Schlüssel: SEEPANYCNGTZFQ-UHFFFAOYSA-N
Achtung: Nur für Forschungszwecke. Nicht für den menschlichen oder tierärztlichen Gebrauch.
Auf Lager
  • Klicken Sie auf QUICK INQUIRY, um ein Angebot von unserem Expertenteam zu erhalten.
  • Mit qualitativ hochwertigen Produkten zu einem WETTBEWERBSFÄHIGEN Preis können Sie sich mehr auf Ihre Forschung konzentrieren.

Wirkmechanismus

Target of Action

Sulfadiazine primarily targets the bacterial enzyme dihydropteroate synthetase . This enzyme plays a crucial role in the synthesis of folic acid, which is essential for bacterial growth and reproduction .

Mode of Action

Sulfadiazine acts as a competitive inhibitor of dihydropteroate synthetase . It competes with para-aminobenzoic acid (PABA) for binding to the enzyme, thereby inhibiting the synthesis of folic acid . This results in the inhibition of bacterial growth and reproduction .

Biochemical Pathways

The primary biochemical pathway affected by sulfadiazine is the folic acid synthesis pathway in bacteria . By inhibiting dihydropteroate synthetase, sulfadiazine prevents the proper processing of PABA, which is essential for folic acid synthesis . This leads to a decrease in the production of folic acid, which is necessary for bacterial growth and reproduction .

Pharmacokinetics

Sulfadiazine is rapidly and extensively absorbed from the gut and is 20 to 55% bound to plasma proteins . Its elimination half-life is 7-12 hours . Sulfadiazine can cross the placenta, achieving blood concentrations in the fetus of 50 to 90% of those in the mother . It also achieves high concentrations in breast milk (20% of plasma) .

Result of Action

The primary result of sulfadiazine’s action is the inhibition of bacterial growth and reproduction . By inhibiting the synthesis of folic acid, sulfadiazine prevents bacteria from growing and reproducing effectively . This makes it an effective treatment for a variety of bacterial infections .

Action Environment

The action of sulfadiazine can be influenced by various environmental factors. For example, the presence of pus can inhibit its antibacterial action . The degradation of sulfadiazine can be influenced by factors such as temperature, pH, and the presence of certain ions .

Eigenschaften

IUPAC Name

4-amino-N-pyrimidin-2-ylbenzenesulfonamide
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C10H10N4O2S/c11-8-2-4-9(5-3-8)17(15,16)14-10-12-6-1-7-13-10/h1-7H,11H2,(H,12,13,14)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

SEEPANYCNGTZFQ-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1=CN=C(N=C1)NS(=O)(=O)C2=CC=C(C=C2)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C10H10N4O2S
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID7044130
Record name Sulfadiazine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7044130
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

250.28 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Sulfadiazine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014503
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

6.01e-01 g/L
Record name Sulfadiazine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00359
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Sulfadiazine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014503
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid.
Record name Sulfadiazine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00359
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

68-35-9
Record name Sulfadiazine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=68-35-9
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Sulfadiazine [USP:INN:BAN:JAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000068359
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Sulfadiazine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00359
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name sulfadiazine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757324
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name sulfadiazine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=35600
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Benzenesulfonamide, 4-amino-N-2-pyrimidinyl-
Source EPA Chemicals under the TSCA
URL https://www.epa.gov/chemicals-under-tsca
Description EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting.
Record name Sulfadiazine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7044130
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Sulfadiazine
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.000.623
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name SULFADIAZINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/0N7609K889
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Sulfadiazine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014503
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods

Procedure details

An aqueous solution consisting of 0.5 g sodium sulfadiazine, 0.5 ml ethyl alcohol, 13 ml of 20% sodium sulfate and 20 ml of 5% gelatin (type B: acid processed) was titrated, while under constant agitation with a magnetic stirrer, with 18.4 ml of 0.1N hydrochloric acid solution. This procedure resulted in a white suspension of microencapsulated sulfadiazine particles. The suspension was then stirred for an additional 15 minutes, following which it was poured into 200 ml of cold (5° C.) 7% sodium sulfate solution, and stirred for 30 minutes at ice-bath temperature. This procedure caused gelling of the liquid gelatin shell of the microcapsules. The entire process was monitored by observation of samples in the optical microscope. The microcapsules were of assymetric appearance and of a size less than 10 μm.
Name
sodium sulfadiazine
Quantity
0.5 g
Type
reactant
Reaction Step One
Quantity
13 mL
Type
reactant
Reaction Step Two
Quantity
18.4 mL
Type
reactant
Reaction Step Three
Quantity
0.5 mL
Type
solvent
Reaction Step Four

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Sulfadiazine
Reactant of Route 2
Reactant of Route 2
Sulfadiazine
Reactant of Route 3
Reactant of Route 3
Sulfadiazine
Reactant of Route 4
Sulfadiazine
Reactant of Route 5
Sulfadiazine
Reactant of Route 6
Sulfadiazine

Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten

Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.