molecular formula Cl2H6N2Pt B1684305 Cisplatino CAS No. 15663-27-1

Cisplatino

Número de catálogo: B1684305
Número CAS: 15663-27-1
Peso molecular: 300.05 g/mol
Clave InChI: LXZZYRPGZAFOLE-UHFFFAOYSA-L
Atención: Solo para uso de investigación. No para uso humano o veterinario.
En Stock
  • Haga clic en CONSULTA RÁPIDA para recibir una cotización de nuestro equipo de expertos.
  • Con productos de calidad a un precio COMPETITIVO, puede centrarse más en su investigación.

Mecanismo De Acción

Target of Action

Cisplatin, a platinum-based chemotherapy agent, primarily targets DNA within the cell . It forms covalent bonds with the purine bases of DNA, leading to the formation of intra- and inter-strand DNA adducts .

Mode of Action

Cisplatin interacts with DNA to form cisplatin-DNA adducts, which cause DNA damage and inhibit DNA synthesis . This interaction leads to cell cycle arrest and triggers apoptosis . The cisplatin-modified DNA is poorly repaired due to a shielding effect caused by proteins attracted to the modified DNA .

Biochemical Pathways

Cisplatin affects several biochemical pathways. It activates three major pathways of apoptosis: the extrinsic pathway mediated by death receptors, the intrinsic pathway centered on mitochondria, and the endoplasmic reticulum (ER)-stress pathway . The drug induces its cytotoxic properties through binding to nuclear DNA and subsequent interference with normal transcription and/or DNA replication mechanisms .

Pharmacokinetics

The pharmacokinetics of cisplatin are complex . It is absorbed into the cancer cell and interacts with cellular macromolecules . The pharmacokinetics of cisplatin can be influenced by patient characteristics .

Result of Action

The primary result of cisplatin’s action is the induction of cell death through apoptosis . The drug’s interaction with DNA leads to DNA damage, cell cycle arrest, and ultimately, apoptosis . Cisplatin also induces both intrinsic and extrinsic pathways of apoptosis, resulting in the production of reactive oxygen species, activation of various signal transduction pathways, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins .

Action Environment

The action of cisplatin can be influenced by the cellular environment. For instance, the drug’s diffusion can be dependent on membrane composition . Additionally, the drug’s effectiveness can be hindered by the development of resistance, leading to cancer relapse . Various mechanisms contribute to cisplatin resistance, including diminished intracellular cisplatin accumulation, intracellular detoxification, DNA repair, autophagy responses, heat shock proteins, tumor microenvironment, cancer stem cells, epigenetic regulation, ferroptosis resistance, and metabolic reprogramming .

Análisis Bioquímico

Biochemical Properties

Cisplatin plays a significant role in biochemical reactions. It interacts with various enzymes, proteins, and other biomolecules. The copper transporter 1 is particularly important for cisplatin uptake in tumor cells . Cisplatin also interacts with the organic cation transporter 2, which may play a major role in the development of undesired cisplatin side effects .

Cellular Effects

Cisplatin has profound effects on various types of cells and cellular processes. It influences cell function by interfering with transcription and/or DNA replication mechanisms . It also induces cytotoxicity, depending on cell type and concentration . Cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways .

Molecular Mechanism

Cisplatin exerts its effects at the molecular level through a series of steps: cellular uptake, activation by aquation, DNA binding, and the processing of DNA lesions . These steps may alter both DNA transcription and RNA replication, leading to cancer cell death .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of cisplatin change over time. For instance, cisplatin induces multiple episodes of acute kidney injury (AKI), leading to chronic kidney disease (CKD) after the 4th weekly dose . This suggests that cisplatin has long-term effects on cellular function observed in in vitro or in vivo studies .

Dosage Effects in Animal Models

The effects of cisplatin vary with different dosages in animal models. Higher doses of cisplatin result in higher cisplatin tissue retention . Importantly, cisplatin protocol, hydration, and supportive care all together affect not only the maximum tolerated dose or lethal dose but also the therapeutic dose of cisplatin and its side effects .

Metabolic Pathways

Cisplatin is involved in various metabolic pathways. It interacts with enzymes or cofactors and can affect metabolic flux or metabolite levels . Metabolic pathways show strong connections between cisplatin resistance and metabolic reprogramming including glycolysis, glutamine metabolism, and fatty acid metabolism .

Transport and Distribution

Cisplatin is transported and distributed within cells and tissues. It interacts with transporters such as ATP7A and ATP7B, which mediate its efflux from the cell or its distribution to specific sub-cellular compartments .

Subcellular Localization

Cisplatin is extensively sequestered into vesicular structures of the lysosomal, Golgi, and secretory compartments . The detection of cisplatin in the vesicles of the secretory pathway is consistent with a major role for this pathway in the efflux of cisplatin from the cell .

Métodos De Preparación

Azanide; dichloroplatinum(2+) is synthesized through a series of chemical reactions involving platinum compounds. The most common synthetic route involves the reaction of potassium tetrachloroplatinate(II) with ammonia to form cis-diamminedichloroplatinum(II). The reaction conditions typically include an aqueous medium and controlled temperature to ensure the formation of the desired cis isomer . Industrial production methods often involve large-scale synthesis in controlled environments to maintain the purity and efficacy of the compound .

Propiedades

Alkylating agents work by three different mechanisms: 1) attachment of alkyl groups to DNA bases, resulting in the DNA being fragmented by repair enzymes in their attempts to replace the alkylated bases, preventing DNA synthesis and RNA transcription from the affected DNA, 2) DNA damage via the formation of cross-links (bonds between atoms in the DNA) which prevents DNA from being separated for synthesis or transcription, and 3) the induction of mispairing of the nucleotides leading to mutations.

Número CAS

15663-27-1

Fórmula molecular

Cl2H6N2Pt

Peso molecular

300.05 g/mol

Nombre IUPAC

azane;dichloroplatinum

InChI

InChI=1S/2ClH.2H3N.Pt/h2*1H;2*1H3;/q;;;;+2/p-2

Clave InChI

LXZZYRPGZAFOLE-UHFFFAOYSA-L

SMILES

[NH2-].[NH2-].Cl[Pt+2]Cl

SMILES canónico

N.N.Cl[Pt]Cl

Apariencia

Yellow solid powder

melting_point

270 dec °C

14283-03-5

Descripción física

Yellow crystalline solid;  [MSDSonline]

Pictogramas

Corrosive; Irritant; Health Hazard

Pureza

>98% (or refer to the Certificate of Analysis)

Vida útil

>2 years if stored properly

Solubilidad

H2O 1 (mg/mL)
DMSO 10 (mg/mL)
10:1 PVP coprecipitate in 10% PVP 2.5 (mg/mL)
Dimethylformamide (pure anhydrous) 24 (mg/mL)

Almacenamiento

Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Sinónimos

CACP;  cisDDP;  cisdiamminedichloro platinum (II);  cisdiamminedichloroplatinum;  Cisdichloroammine Platinum (II);  Cismaplat;  Cisplatina;  cisplatinous diamine dichloride;  cisplatinum;  cisplatinum II;  cisplatinum II diamine dichloride;  CPDD;  Cysplatyna;  DDP;  PDD;  Peyrones Chloride;  Peyrones Salt;  Platinoxan;  platinum diamminodichloride;  US brand names: Platinol;  PlatinolAQ;  Foreign brand names: Abiplatin;  Blastolem;  Briplatin;  Cisplatyl;  Citoplatino;  Citosin;  Lederplatin;  Metaplatin;  Neoplatin;  Placis;  Platamine;  Platiblastin;  PlatiblastinS;  Platinex;  Platinol AQ;  PlatinolAQ VHA Plus;  Platiran;  Platistin;  Platosin;  Abbreviations: CDDP;  DDP.

Origen del producto

United States

Descargo de responsabilidad e información sobre productos de investigación in vitro

Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.