Rispéridone
Vue d'ensemble
Description
- Its efficacy extends to both positive (hallucinations, delusions) and negative symptoms (social withdrawal, apathy) associated with schizophrenia. Additionally, it can alleviate emotional symptoms related to the disorder .
Risperidone: (chemical formula: C₂₃H₂₇FN₄O₂) is an organic compound used in psychiatry to treat acute and chronic schizophrenia. It falls under the category of atypical antipsychotic medications.
Mécanisme D'action
Target of Action
Risperidone, a second-generation antipsychotic medication, primarily targets dopaminergic D2 receptors and serotonergic 5-HT2A receptors in the brain . These receptors are involved in the regulation of various mood and mental health conditions, including schizophrenia and bipolar disorder .
Mode of Action
Risperidone acts by inhibiting the activity of dopaminergic D2 receptors and serotonergic 5-HT2A receptors . This inhibition is thought to reduce the overactivity of central mesolimbic pathways and mesocortical pathways, which are believed to be caused by an excess of dopaminergic D2 and serotonergic 5-HT2A activity . Risperidone binds with a very high affinity to 5-HT2A receptors, approximately 10-20 fold greater than the drug’s binding affinity to D2 receptors .
Biochemical Pathways
Risperidone’s action on D2 and 5-HT2A receptors affects several biochemical pathways. For instance, it has been reported that risperidone can normalize increased inflammatory parameters and restore anti-inflammatory pathways in a model of neuroinflammation . Additionally, risperidone has been found to affect proteins belonging to the mTOR pathway .
Result of Action
Risperidone’s action on its primary targets leads to several molecular and cellular effects. For instance, risperidone has been reported to dramatically inhibit cell proliferation and significantly induce cell apoptosis . It also affects synaptoneurosomal mitochondrial protein expression, synaptoneurosomal protein phosphorylation, and mitochondrial movement, with implications for neuronal firing and neurogenesis .
Applications De Recherche Scientifique
Chemistry: Risperidone serves as a valuable reference compound for drug development and structure-activity relationship studies.
Biology: Researchers explore its impact on neurotransmitter systems and receptor binding profiles.
Medicine: Beyond schizophrenia, it’s investigated for bipolar disorder, irritability in autism spectrum disorder, and other psychiatric conditions.
Industry: Risperidone’s applications extend to pharmaceutical manufacturing and quality control.
Analyse Biochimique
Biochemical Properties
Risperidone interacts with various enzymes, proteins, and other biomolecules. It has a high binding affinity for 5-hydroxytryptamine2 (5-HT2) receptors and dopamine-D2 receptors . Risperidone also displays higher binding affinity than other drugs for alpha-1 adrenergic, histamine-H1, and alpha-2 adrenergic receptors . These interactions play a crucial role in its function as an antipsychotic medication .
Cellular Effects
Risperidone has significant effects on various types of cells and cellular processes. It influences cell function by impacting cell signaling pathways, gene expression, and cellular metabolism . For instance, it has been shown to reduce overactivity in central mesolimbic pathways and mesocortical pathways, which are thought to be caused by an excess of dopaminergic D2 and serotonergic 5-HT2A activity .
Molecular Mechanism
Risperidone exerts its effects at the molecular level through various mechanisms. It acts as a dopamine and serotonin antagonist, reducing overactivity in certain brain pathways . It binds with a very high affinity to 5-HT2A receptors, approximately 10-20 fold greater than the drug’s binding affinity to D2 receptors . This binding interaction plays a key role in its mechanism of action .
Temporal Effects in Laboratory Settings
The effects of Risperidone change over time in laboratory settings. Studies have shown that Risperidone plasma levels vary greatly among individuals, and are associated with the CYP2D6 phenotypes . The drug’s stability, degradation, and long-term effects on cellular function have been observed in in vitro or in vivo studies .
Dosage Effects in Animal Models
The effects of Risperidone vary with different dosages in animal models. Studies have shown that low doses of Risperidone resulted in control levels of certain behaviors after 6 months of treatment, whereas high doses produced behaviors in the same range as another drug, haloperidol . This suggests that the dosage of Risperidone can significantly impact its effects .
Metabolic Pathways
Risperidone is involved in various metabolic pathways. It is primarily metabolized by cytochrome P450 enzymes, specifically CYP2D6, and to a lesser extent by CYP3A4 and CYP3A5 . This metabolism involves interactions with various enzymes and cofactors, and can affect metabolic flux or metabolite levels .
Transport and Distribution
Risperidone is transported and distributed within cells and tissues. The most dramatic spatial differences in blood-brain barrier transport were found for Risperidone, which is a substrate of P-glycoprotein . This transport and distribution can affect its localization or accumulation within the body .
Subcellular Localization
The subcellular localization of Risperidone and its effects on activity or function have been studied. One study found that a mutation of SIK1, which is associated with autism spectrum disorder, affects the subcellular distribution of SIK1 protein, and this distribution was found to be both in the nucleus and in the cytoplasm . This could potentially impact the activity or function of Risperidone .
Méthodes De Préparation
- Risperidone can be synthesized through various routes. One common method involves the reaction of 3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-6,7,8,9-tetrahydro-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one with appropriate reagents.
- Industrial production methods typically involve large-scale synthesis using optimized conditions to achieve high yields and purity.
Analyse Des Réactions Chimiques
- Risperidone undergoes several types of reactions, including oxidation, reduction, and substitution.
- Common reagents include strong acids or bases, reducing agents, and catalysts.
- Major products formed during these reactions include derivatives of risperidone with modified functional groups.
Comparaison Avec Des Composés Similaires
- Risperidone stands out due to its unique receptor profile and favorable side effect profile.
- Similar compounds include other atypical antipsychotics like olanzapine, quetiapine, and aripiprazole.
Propriétés
IUPAC Name |
3-[2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C23H27FN4O2/c1-15-18(23(29)28-10-3-2-4-21(28)25-15)9-13-27-11-7-16(8-12-27)22-19-6-5-17(24)14-20(19)30-26-22/h5-6,14,16H,2-4,7-13H2,1H3 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
RAPZEAPATHNIPO-UHFFFAOYSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CC1=C(C(=O)N2CCCCC2=N1)CCN3CCC(CC3)C4=NOC5=C4C=CC(=C5)F | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C23H27FN4O2 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
DSSTOX Substance ID |
DTXSID8045193 | |
Record name | Risperidone | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID8045193 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
410.5 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Solid | |
Record name | Risperidone | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0005020 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Solubility |
Soluble in methylene chloride; sparingly soluble in alcohol; practically insoluble in water, Practically insoluble in water, freely soluble in methylene chloride and soluble in methanol and 0.1N hydrochloric acid | |
Record name | Risperidone | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00734 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | RISPERIDONE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7580 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Mechanism of Action |
Though its precise mechanism of action is not fully understood, current focus is on the ability of risperidone to inhibit the D2 dopaminergic receptors and 5-HT2A serotonergic receptors in the brain. Schizophrenia is thought to result from an excess of dopaminergic D2 and serotonergic 5-HT2A activity, resulting in overactivity of central mesolimbic pathways and mesocortical pathways, respectively. D2 dopaminergic receptors are transiently inhibited by risperidone, reducing dopaminergic neurotransmission, therefore decreasing positive symptoms of schizophrenia, such as delusions and hallucinations. Risperidone binds transiently and with loose affinity to the dopaminergic D2 receptor, with an ideal receptor occupancy of 60-70% for optimal effect. Rapid dissociation of risperidone from the D2 receptors contributes to decreased risk of extrapyramidal symptoms (EPS), which occur with permanent and high occupancy blockade of D2 dopaminergic receptors. Low-affinity binding and rapid dissociation from the D2 receptor distinguish risperidone from the traditional antipsychotic drugs. A higher occupancy rate of D2 receptors is said to increase the risk of extrapyramidal symptoms and is therefore to be avoided. Increased serotonergic mesocortical activity in schizophrenia results in negative symptoms, such as depression and decreased motivation. The high-affinity binding of risperidone to 5-HT2A receptors leads to a decrease in serotonergic activity. In addition, 5-HT2A receptor blockade results in decreased risk of extrapyramidal symptoms, likely by increasing dopamine release from the frontal cortex, and not the nigrostriatal tract. Dopamine level is therefore not completely inhibited. Through the above mechanisms, both serotonergic and D2 blockade by risperidone are thought to synergistically work to decrease the risk of extrapyramidal symptoms. Risperidone has also been said to be an antagonist of alpha-1 (α1), alpha-2 (α2), and histamine (H1) receptors. Blockade of these receptors is thought to improve symptoms of schizophrenia, however the exact mechanism of action on these receptors is not fully understood at this time., Risperidone has high affinity for several receptors, including serotonin receptors (5-HT 2A/2C), D2 dopamine receptors and alpha1 and H1 receptors. It has no appreciable activity at M1 receptors. Its primary metabolite (9-hydroxyrisperidone) is nearly equipotent compared with the parent compound at D2 and 5-HT 2A receptors., The exact mechanism of antipsychotic action of risperidone has not been fully elucidated but, like that of clozapine, appears to be more complex than that of most other antipsychotic agents and may involve antagonism of central type 2 serotonergic (5-HT2) receptors and central dopamine D2 receptors., Risperidone is an atypical antipsychotic drug that is widely prescribed to young patients with different psychotic disorders. The long-term effects of this antipsychotic agent on neuronal receptors in developing brain remain unclear and require further investigation. In this study, we examined the effects of long-term treatment of risperidone on two serotonin receptor subtypes in brain regions of juvenile rat. Levels of 5-HT(1A) and 5-HT(2A) receptors in forebrain regions of juvenile rats were quantified after 3 weeks of treatment with three different doses of risperidone (0.3, 1.0 and 3.0mg/kg). Findings were compared to previously reported changes in 5-HT receptors after risperidone treatment (3.0mg/kg) in adult rat brain. The three doses of risperidone selectively and dose-dependently increased levels of 5-HT(1A) receptors in medial-prefrontal and dorsolateral-frontal cortices of juvenile animals. The higher doses (1.0 and 3.0mg/kg) of risperidone also increased 5-HT(1A) receptor binding in hippocampal CA(1) region of juvenile but not adult rats. In contrast, the three doses of risperidone significantly reduced 5-HT(2A) labeling in medial-prefrontal and dorsolateral-frontal cortices in juvenile as well as in adult animals in an equipotent fashion. 5-HT(1A) and 5-HT(2A) receptors in other forebrain regions were not altered by repeated risperidone treatment. These findings indicate that there are differential effects of risperidone on 5-HT(1A) and 5-HT(2A) receptors in juvenile animals, and that the 5-HT system in developing animals is more sensitive than adults to the long-term effects of risperidone., The main class of atypical antipsychotic drugs (APDs) in current use includes the protypical atypical APD, clozapine, as well as aripiprazole, asenapine, iloperidone, lurasidone, olanzapine, quetiapine, risperidone, and ziprasidone. At clinically effective doses, these agents produce extensive blockade of serotonin (5-HT)(2A) receptors, direct or indirect stimulation of 5-HT(1A) receptors, and to a lesser extent, reduction in dopamine (DA) D(2) receptor-mediated neurotransmission. This contrasts with typical APDs, for example haloperidol and perphenazine, which are mainly DA D(2/)D(3) receptor antagonists and have weaker, if any, potency as 5-HT(2A) receptor antagonists. Some, but not all, atypical APDs are also effective 5-HT(2C) receptor inverse agonists or neutral antagonists, 5-HT(6) or 5-HT(7) receptor antagonists. This diverse action on 5-HT receptors may contribute to significant differences in efficacy and tolerability among the atypical APDs. There is considerable preclinical and some clinical evidence that effects on 5-HT receptors contribute to the low risk of producing extrapyramidal side effects, which is the defining characteristic of an atypical APD, the lack of elevation in plasma prolactin levels (with risperidone and 9-hydroxyrisperidone being exceptions), antipsychotic action, and ability to improve some domains of cognition in patients with schizophrenia. The serotonergic actions of the atypical APDs, especially 5-HT(2A) receptor antagonism, are particularly important to the differential effects of typical and atypical APDs to overcome the effects of acute or subchronic administration of N-methyl-d-aspartate (NMDA) receptor antagonists, such as phencyclidine, ketamine, and dizocipline (MK-801). 5-HT(1A) receptor stimulation and 5-HT(6) and 5-HT(7) receptor antagonism may contribute to beneficial effects of these agents on cognition. In particular, 5-HT(7) receptor antagonism may be the basis for the pro-cognitive effects of the atypical APD, amisulpride, a D(2)/D(3) receptor antagonist, which has no effect on other 5-HT receptor. 5-HT(2C) receptor antagonism appears to contribute to the weight gain produced by some atypical APDs and may also affect cognition and psychosis via its influence on cortical and limbic dopaminergic activity., Paliperidone is an active metabolite of the second-generation atypical antipsychotic, risperidone recently approved for the treatment of schizophrenia and schizoaffective disorder. Because paliperidone differs from risperidone by only a single hydroxyl group, questions have been raised as to whether there are significant differences in the effects elicited between these two drugs. /The researchers/ compared the relative efficacies of paliperidone versus risperidone to regulate several cellular signalling pathways coupled to four selected GPCR targets that are important for either therapeutic or adverse effects: human dopamine D2 , human serotonin 2A receptor subtype (5-HT2A ), human serotonin 2C receptor subtype and human histamine H1 receptors. Whereas the relative efficacies of paliperidone and risperidone were the same for some responses, significant differences were found for several receptor-signalling systems, with paliperidone having greater or less relative efficacy than risperidone depending upon the receptor-response pair. Interestingly, for 5-HT2A -mediated recruitment of beta-arrestin, 5-HT2A -mediated sensitization of ERK, and dopamine D2 -mediated sensitization of adenylyl cyclase signalling, both paliperidone and risperidone behaved as agonists. These results suggest that the single hydroxyl group of paliperidone promotes receptor conformations that can differ from those of risperidone leading to differences in the spectrum of regulation of cellular signal transduction cascades. Such differences in signalling at the cellular level could lead to differences between paliperidone and risperidone in therapeutic efficacy or in the generation of adverse effects. | |
Record name | Risperidone | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00734 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | RISPERIDONE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7580 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Impurities |
3-[2-[4-[(E)-(2,4-difluorophenyl)(hydroxyimino)methyl]piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one; 3-[2-[4-[(Z)-(2,4-difluorophenyl)(hydroxyimino)methyl]piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one; (9RS)-3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-9-hydroxy-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one; 3-[2-[4-(5-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one; (6RS)-3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-2,6-dimethyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one; 2-[2-methyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-3-yl]ethyl 4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidine-1-carboxylate; 3-[2-[4-(2,4-difluorobenzoyl)piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one; 3-[2-[4-[4-fluoro-2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidine-1-yl]benzoyl]piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one | |
Record name | RISPERIDONE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7580 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Color/Form |
White to slightly beige powder, Crystals from dimethylformamide + propanol | |
CAS No. |
106266-06-2 | |
Record name | Risperidone | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=106266-06-2 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Risperidone [USAN:USP:INN:BAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0106266062 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Risperidone | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00734 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | risperidone | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759895 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | Risperidone | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID8045193 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | 4H-Pyrido[1,2-a]pyrimidin-4-one, 3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]ethyl]-6,7,8,9-tetrahydro-2-methyl | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.114.705 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | RISPERIDONE | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/L6UH7ZF8HC | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Record name | RISPERIDONE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7580 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Risperidone | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0005020 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
170 °C | |
Record name | Risperidone | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00734 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | RISPERIDONE | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7580 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Risperidone | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0005020 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Synthesis routes and methods I
Procedure details
Synthesis routes and methods II
Procedure details
Synthesis routes and methods III
Procedure details
Synthesis routes and methods IV
Procedure details
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Avertissement et informations sur les produits de recherche in vitro
Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.