molecular formula C16H19NO3S B139052 5-Ethyl-2-pyridineethanol Tosylate CAS No. 144809-27-8

5-Ethyl-2-pyridineethanol Tosylate

カタログ番号: B139052
CAS番号: 144809-27-8
分子量: 305.4 g/mol
InChIキー: XOKOJAMQAAPMRF-UHFFFAOYSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

説明

5-Ethyl-2-pyridineethanol Tosylate is a chemical compound belonging to the class of tosylates. Tosylates are esters of p-toluenesulfonic acid and are commonly used in organic synthesis due to their excellent leaving group properties. This compound is particularly interesting due to its unique structure, which includes a pyridyl group, making it valuable in various scientific research applications.

準備方法

Synthetic Routes and Reaction Conditions

The synthesis of 5-Ethyl-2-pyridineethanol Tosylate typically involves the tosylation of 2-(5-Ethyl-2-pyridyl)ethanol. The reaction is carried out using p-toluenesulfonyl chloride (TsCl) in the presence of a base such as pyridine or triethylamine. The reaction is usually conducted at room temperature or slightly elevated temperatures to ensure complete conversion.

Industrial Production Methods

Industrial production of this compound follows similar synthetic routes but on a larger scale. The process involves the use of large reactors and precise control of reaction conditions to ensure high yield and purity. The product is then purified using standard techniques such as recrystallization or chromatography.

化学反応の分析

Types of Reactions

5-Ethyl-2-pyridineethanol Tosylate undergoes various types of chemical reactions, including:

    Nucleophilic Substitution Reactions: Due to the excellent leaving group properties of the tosylate group, it readily undergoes nucleophilic substitution reactions with a variety of nucleophiles.

    Reduction Reactions: The compound can be reduced to form the corresponding alcohol or amine derivatives.

    Oxidation Reactions: It can also undergo oxidation reactions to form various oxidized products.

Common Reagents and Conditions

    Nucleophilic Substitution: Common reagents include sodium azide, potassium cyanide, and various amines.

    Reduction: Common reducing agents include lithium aluminum hydride (LiAlH4) and sodium borohydride (NaBH4).

    Oxidation: Common oxidizing agents include potassium permanganate (KMnO4) and chromium trioxide (CrO3).

Major Products

The major products formed from these reactions depend on the specific conditions and reagents used. For example, nucleophilic substitution reactions can yield a variety of substituted pyridyl derivatives, while reduction reactions typically yield alcohols or amines .

科学的研究の応用

5-Ethyl-2-pyridineethanol Tosylate has a wide range of applications in scientific research:

    Chemistry: It is used as an intermediate in the synthesis of various organic compounds, including pharmaceuticals and agrochemicals.

    Biology: The compound is used in the study of biological systems, particularly in the synthesis of biologically active molecules.

    Industry: The compound is used in the production of polymers and other industrial materials.

作用機序

The mechanism of action of 5-Ethyl-2-pyridineethanol Tosylate primarily involves its role as a leaving group in nucleophilic substitution reactions. The tosylate group is easily displaced by nucleophiles, facilitating the formation of new chemical bonds. This property makes it a valuable intermediate in various synthetic processes .

類似化合物との比較

Similar Compounds

  • 2-(2-Pyridyl)ethyl Tosylate
  • 2-(4-Ethyl-2-pyridyl)ethyl Tosylate
  • 2-(5-Methyl-2-pyridyl)ethyl Tosylate

Uniqueness

5-Ethyl-2-pyridineethanol Tosylate is unique due to the presence of the ethyl group at the 5-position of the pyridyl ring. This structural feature can influence the compound’s reactivity and its interactions with other molecules, making it distinct from other similar tosylates .

特性

IUPAC Name

2-(5-ethylpyridin-2-yl)ethyl 4-methylbenzenesulfonate
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C16H19NO3S/c1-3-14-6-7-15(17-12-14)10-11-20-21(18,19)16-8-4-13(2)5-9-16/h4-9,12H,3,10-11H2,1-2H3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

XOKOJAMQAAPMRF-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCC1=CN=C(C=C1)CCOS(=O)(=O)C2=CC=C(C=C2)C
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C16H19NO3S
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID10460656
Record name 2-(5-Ethyl-2-pyridyl)ethyl Tosylate
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID10460656
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

305.4 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

144809-27-8
Record name 2-(5-Ethyl-2-pyridyl)ethyl Tosylate
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID10460656
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。