molecular formula C6H14N2 B091421 1,4-ジメチルピペラジン CAS No. 106-58-1

1,4-ジメチルピペラジン

カタログ番号: B091421
CAS番号: 106-58-1
分子量: 114.19 g/mol
InChIキー: RXYPXQSKLGGKOL-UHFFFAOYSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

説明

1,4-Dimethylpiperazine is an organic compound with the molecular formula C₆H₁₄N₂. It is a derivative of piperazine, where two hydrogen atoms on the nitrogen atoms are replaced by methyl groups. This compound is known for its use as an intermediate in the synthesis of various pharmaceuticals and as a catalyst in chemical reactions .

科学的研究の応用

1,4-Dimethylpiperazine has a wide range of applications in scientific research:

作用機序

Target of Action

1,4-Dimethylpiperazine primarily acts as a catalyst for polyurethane foams and an intermediate for cationic surfactants . It plays a crucial role in the production of these materials, facilitating the necessary chemical reactions.

Mode of Action

As a catalyst, 1,4-Dimethylpiperazine accelerates the chemical reactions involved in the formation of polyurethane foams. It does this by reducing the activation energy required for the reaction, enabling it to proceed at a faster rate or at a lower temperature .

Biochemical Pathways

It’s known that it plays a role in the synthesis of polyurethane foams and cationic surfactants .

Result of Action

The primary result of 1,4-Dimethylpiperazine’s action is the formation of polyurethane foams and cationic surfactants . These materials have a wide range of applications, from insulation and cushioning to detergents and fabric softeners.

Action Environment

Environmental factors can influence the action, efficacy, and stability of 1,4-Dimethylpiperazine. For instance, temperature and pressure can affect the rate at which it catalyzes reactions . Proper storage conditions, such as storing it below +30°C, are necessary to maintain its stability .

生化学分析

Biochemical Properties

It is known that it is a very water-soluble substance (> 1000 g/L) with a moderate partition coefficient (log P -0.26 at 20°C and pH 8.0-8.3) This suggests that it may interact with various enzymes, proteins, and other biomolecules in a biochemical context

Molecular Mechanism

It is known that it can interact with other molecules due to its chemical structure . The specifics of these interactions, including any binding interactions with biomolecules, enzyme inhibition or activation, and changes in gene expression, are not currently known.

Temporal Effects in Laboratory Settings

Information on the product’s stability, degradation, and any long-term effects on cellular function observed in in vitro or in vivo studies is currently lacking .

Dosage Effects in Animal Models

There is currently no available information on the effects of different dosages of 1,4-Dimethylpiperazine in animal models .

Metabolic Pathways

It is known that it can interact with other molecules due to its chemical structure , but the specifics of these interactions, including any effects on metabolic flux or metabolite levels, are not currently known .

Transport and Distribution

It is known that it is a very water-soluble substance , which suggests that it could be transported and distributed within cells and tissues. The specifics of these processes, including any transporters or binding proteins that it interacts with, as well as any effects on its localization or accumulation, are not currently known.

Subcellular Localization

It is known that it is a very water-soluble substance , which suggests that it could be localized in various subcellular compartments. The specifics of this localization, including any targeting signals or post-translational modifications that direct it to specific compartments or organelles, are not currently known .

準備方法

Synthetic Routes and Reaction Conditions

1,4-Dimethylpiperazine can be synthesized through several methods. One common method involves the reaction of N-methyldiethanolamine with hydrogen and monomethylamine in the presence of a catalyst. The reaction mixture is introduced into a tubular fixed bed reactor filled with a rare earth element-modified copper-based composite catalyst. The raw materials are gasified at high temperatures, and the mixed gas contacts the catalyst to form 1,4-dimethylpiperazine. The reaction mixture is then condensed, collected, and purified to obtain high-purity 1,4-dimethylpiperazine .

Industrial Production Methods

The industrial production of 1,4-dimethylpiperazine typically follows the same synthetic route as described above. The use of a tubular fixed bed reactor and a rare earth element-modified copper-based composite catalyst ensures high catalytic activity and simple industrial scale-up .

化学反応の分析

Types of Reactions

1,4-Dimethylpiperazine undergoes various chemical reactions, including:

Common Reagents and Conditions

Major Products Formed

類似化合物との比較

Similar Compounds

    Piperazine: The parent compound of 1,4-dimethylpiperazine, with two hydrogen atoms on the nitrogen atoms.

    1-Methylpiperazine: A derivative with one methyl group on one of the nitrogen atoms.

    N,N’-Dimethylpiperazine: Another name for 1,4-dimethylpiperazine.

Uniqueness

1,4-Dimethylpiperazine is unique due to its specific substitution pattern, which imparts distinct chemical and physical properties. Its ability to act as a catalyst and intermediate in various chemical reactions makes it valuable in both research and industrial applications .

特性

IUPAC Name

1,4-dimethylpiperazine
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C6H14N2/c1-7-3-5-8(2)6-4-7/h3-6H2,1-2H3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

RXYPXQSKLGGKOL-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CN1CCN(CC1)C
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C6H14N2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID8051544
Record name 1,4-Dimethylpiperazine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8051544
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

114.19 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Liquid
Record name Piperazine, 1,4-dimethyl-
Source EPA Chemicals under the TSCA
URL https://www.epa.gov/chemicals-under-tsca
Description EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting.

Vapor Pressure

5.22 [mmHg]
Record name N,N'-Dimethylpiperazine
Source Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
URL https://haz-map.com/Agents/2217
Description Haz-Map® is an occupational health database designed for health and safety professionals and for consumers seeking information about the adverse effects of workplace exposures to chemical and biological agents.
Explanation Copyright (c) 2022 Haz-Map(R). All rights reserved. Unless otherwise indicated, all materials from Haz-Map are copyrighted by Haz-Map(R). No part of these materials, either text or image may be used for any purpose other than for personal use. Therefore, reproduction, modification, storage in a retrieval system or retransmission, in any form or by any means, electronic, mechanical or otherwise, for reasons other than personal use, is strictly prohibited without prior written permission.

CAS No.

106-58-1
Record name 1,4-Dimethylpiperazine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=106-58-1
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name N,N'-Dimethylpiperazine
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000106581
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name 1,4-Dimethylpiperazine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=41177
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Piperazine, 1,4-dimethyl-
Source EPA Chemicals under the TSCA
URL https://www.epa.gov/chemicals-under-tsca
Description EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting.
Record name 1,4-Dimethylpiperazine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8051544
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 1,4-dimethylpiperazine
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.003.103
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name 1,4-DIMETHYLPIPERAZINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/TF146U602L
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods

Procedure details

A solution of 86 g. (1.0 mole) of piperazine in 262 g. ethanol was added with stirring to 130 g. (1.6 moles) of 37% formalin in an appropriate vessel at a temperature of 30°-40°C. maintained with cooling. This slurry, containing 25 wt.% water and 75 wt.% ethanol as solvent, based on solvent weight, was then charged to an autoclave containing 14 g. of a supported nickel catalyst (Harshaw Ni-3266P, Harshaw Chemical Company) and stirred in a hydrogen atmosphere at 91°C. under 50 psig for 5 hours. Analysis of the crude product by gas liquid chromatography, calculating on a water-alcohol free basis, gave 60.4% 1,4-dimethylpiperazine, 38.2% 1-methylpiperazine, and 0.5% piperazine.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
0 (± 1) mol
Type
catalyst
Reaction Step Two
Quantity
1 mol
Type
reactant
Reaction Step Three
Quantity
1.6 mol
Type
reactant
Reaction Step Four
[Compound]
Name
crude product
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Five
[Compound]
Name
water-alcohol
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Six
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Seven
Yield
38.2%
Yield
0.5%

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
1,4-Dimethylpiperazine
Reactant of Route 2
Reactant of Route 2
1,4-Dimethylpiperazine
Reactant of Route 3
1,4-Dimethylpiperazine
Reactant of Route 4
Reactant of Route 4
1,4-Dimethylpiperazine
Reactant of Route 5
1,4-Dimethylpiperazine
Reactant of Route 6
Reactant of Route 6
Reactant of Route 6
1,4-Dimethylpiperazine

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。