molecular formula C15H12N2O2 B1677851 オクスカルバゼピン CAS No. 28721-07-5

オクスカルバゼピン

カタログ番号: B1677851
CAS番号: 28721-07-5
分子量: 252.27 g/mol
InChIキー: CTRLABGOLIVAIY-UHFFFAOYSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

説明

オクスカルバゼピンは、主にてんかんの治療に使用される薬剤です。カルバマゼピンの構造誘導体であり、抗てんかん作用が知られています。オクスカルバゼピンは、トリレプタルやオクセラールXRなど、さまざまなブランド名で販売されています。 成人および小児の両方における部分発作の管理に使用されます .

2. 製法

合成経路と反応条件: オクスカルバゼピンは、カルバマゼピン分子を酸化させる化学反応によってカルバマゼピンから合成されます。このプロセスは通常、過酸化水素や過酸などの酸化剤の使用を伴います。 反応条件には、カルバマゼピンをオクスカルバゼピンに選択的に酸化するため、制御された温度とpHが含まれます .

工業的生産方法: 工業的な設定では、オクスカルバゼピンの生産は、同様の酸化剤を用いた大規模酸化反応を伴います。 このプロセスは、高収率と純度のために最適化されており、多くの場合、再結晶やクロマトグラフィーなどの複数の精製工程が含まれ、不純物や副生成物を除去します .

作用機序

オクスカルバゼピンとその活性代謝物であるMHDは、電位依存性ナトリウムチャネルを遮断することで作用を及ぼします。この作用は、過度に興奮した神経膜を安定させ、神経細胞の反復的な発火を抑制し、シナプスインパルスの伝播を減少させます。 これらのメカニズムは、発作の伝播を防ぐために重要です .

類似化合物:

比較:

オクスカルバゼピンは、薬物相互作用の起こりやすさが低く、副作用プロファイルが比較的良好で、部分発作の管理に効果的であるため、際立っています .

科学的研究の応用

Oxcarbazepine has a wide range of applications in scientific research:

生化学分析

Biochemical Properties

Oxcarbazepine exerts its effects by interacting with various biomolecules in the body. The primary biochemical property of oxcarbazepine is its ability to inhibit voltage-gated sodium channels, which are essential for the propagation of action potentials in neurons. By blocking these channels, oxcarbazepine reduces the abnormal electrical activity in the brain that leads to seizures . Additionally, oxcarbazepine undergoes rapid and extensive metabolism to its active metabolite, 10-hydroxycarbazepine, through the action of cytosolic arylketone reductase .

Cellular Effects

Oxcarbazepine has significant effects on various types of cells and cellular processes. In neurons, oxcarbazepine inhibits the excessive firing of action potentials by blocking voltage-gated sodium channels. This action stabilizes hyperexcited neural membranes and reduces the frequency of seizures . Oxcarbazepine also influences cell signaling pathways, gene expression, and cellular metabolism. It has been shown to modulate the release of neurotransmitters, thereby affecting synaptic transmission and neuronal communication .

Molecular Mechanism

The molecular mechanism of oxcarbazepine involves its interaction with voltage-gated sodium channels. By binding to these channels, oxcarbazepine prevents the influx of sodium ions, which is necessary for the initiation and propagation of action potentials in neurons . This blockade of sodium channels reduces neuronal excitability and prevents the spread of abnormal electrical activity in the brain. Additionally, oxcarbazepine’s active metabolite, 10-hydroxycarbazepine, contributes to its anticonvulsant effects by further inhibiting sodium channels .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of oxcarbazepine have been studied over time to understand its stability, degradation, and long-term impact on cellular function. Oxcarbazepine is rapidly absorbed and metabolized to 10-hydroxycarbazepine, which has a longer half-life and provides sustained anticonvulsant effects . Studies have shown that oxcarbazepine maintains its efficacy over extended periods, with minimal degradation . Long-term treatment with oxcarbazepine has been associated with stable seizure control and minimal adverse effects on cellular function .

Dosage Effects in Animal Models

The effects of oxcarbazepine vary with different dosages in animal models. At therapeutic doses, oxcarbazepine effectively reduces seizure frequency without causing significant adverse effects . At higher doses, oxcarbazepine can lead to toxic effects, including sedation, ataxia, and hepatotoxicity . Animal studies have also shown that chronic administration of oxcarbazepine can result in the development of tolerance, necessitating dose adjustments to maintain its anticonvulsant efficacy .

Metabolic Pathways

Oxcarbazepine is primarily metabolized in the liver through the action of cytosolic arylketone reductase, which converts it to its active metabolite, 10-hydroxycarbazepine . This metabolite is further metabolized through glucuronidation and hydroxylation pathways . The metabolic pathways of oxcarbazepine are distinct from those of carbamazepine, resulting in reduced drug-drug interactions and a more favorable safety profile .

Transport and Distribution

After oral administration, oxcarbazepine is rapidly absorbed and distributed throughout the body . Its active metabolite, 10-hydroxycarbazepine, has a volume of distribution of 0.75 L/kg and is extensively bound to plasma proteins . Oxcarbazepine and its metabolites are primarily excreted through the kidneys . The transport and distribution of oxcarbazepine within cells and tissues are influenced by its interactions with transporters and binding proteins .

Subcellular Localization

Oxcarbazepine and its active metabolite, 10-hydroxycarbazepine, are localized within the cytosol of cells . The subcellular localization of oxcarbazepine is crucial for its activity, as it allows the compound to interact with voltage-gated sodium channels and exert its anticonvulsant effects . The targeting of oxcarbazepine to specific cellular compartments is facilitated by its chemical structure and post-translational modifications .

準備方法

Synthetic Routes and Reaction Conditions: Oxcarbazepine is synthesized from carbamazepine through a chemical reaction that involves the oxidation of the carbamazepine molecule. The process typically involves the use of oxidizing agents such as hydrogen peroxide or peracids. The reaction conditions include controlled temperature and pH to ensure the selective oxidation of the carbamazepine to oxcarbazepine .

Industrial Production Methods: In industrial settings, the production of oxcarbazepine involves large-scale oxidation reactions using similar oxidizing agents. The process is optimized for high yield and purity, often involving multiple purification steps such as recrystallization and chromatography to remove impurities and by-products .

化学反応の分析

反応の種類: オクスカルバゼピンは、次のようなさまざまな化学反応を起こします。

一般的な試薬と条件:

    酸化剤: 過酸化水素、過酸。

    還元剤: 水素化ホウ素ナトリウム、水素化リチウムアルミニウム。

    置換試薬: ハロゲン、アルキル化剤

主要な生成物:

4. 科学研究への応用

オクスカルバゼピンは、科学研究において幅広い用途があります。

    化学: 酸化反応と還元反応を研究するためのモデル化合物として使用されます。

    生物学: 神経活動と神経伝達物質放出への影響について調査されています。

    医学: 抗てんかん作用と、躁うつ病の治療における潜在的な使用について広く研究されています。

    業界: 新規医薬品製剤や薬物送達システムの開発に使用されます .

特性

IUPAC Name

5-oxo-6H-benzo[b][1]benzazepine-11-carboxamide
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C15H12N2O2/c16-15(19)17-12-7-3-1-5-10(12)9-14(18)11-6-2-4-8-13(11)17/h1-8H,9H2,(H2,16,19)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

CTRLABGOLIVAIY-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1C2=CC=CC=C2N(C3=CC=CC=C3C1=O)C(=O)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C15H12N2O2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID0045703
Record name Oxcarbazepine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID0045703
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

252.27 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Oxcarbazepine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014914
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

Slightly soluble in chloroform, dichloromethane, acetone, and methanol and practically insoluble in ethanol, ether, and water., 1.60e-01 g/L
Record name OXCARBAZEPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7524
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Oxcarbazepine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014914
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

The exact mechanism through which oxcarbazepine and its active metaoblite, MHD, exert their anti-epileptic effects is unclear, but is thought to primarily involve the blockade of voltage-gated sodium channels. The opening and closing of sodium channels allows for the propagation of action potentials along neurons - in epilepsy, these action potentials can occur in excess of that required for normal function, and the repetitive and pathological firing of these action potentials leads to seizure activity. Both oxcarbazepine and MHD are thought to inhibit seizure activity by binding to the inactive state of voltage-gated sodium channels, thus prolonging the period in which the receptor is unavailable for action potential propagation. This helps to stabilize hyperexcited neuronal membranes, inhibit repetitive neuron firing, and prevent the spread of seizure activity within the CNS without affecting normal neuronal transmission. Increased potassium conductance and modulation of voltage-activated calcium channels is also thought to play a role in the anti-seizure activity of oxcarbazepine. Inhibition of glutamatergic activity was thought to contribute to oxcarbazepine's activity, but this effect could not be replicated _in vivo_., The pharmacological activity of Trileptal (oxcarbazepine) is primarily exerted through the 10-monohydroxy metabolite (MHD) of oxcarbazepine. The precise mechanism by which oxcarbazepine and MHD exert their antiseizure effect is unknown; however, in vitro electrophysiological studies indicate that they produce blockade of voltage-sensitive sodium channels, resulting in stabilization of hyperexcited neural membranes, inhibition of repetitive neuronal firing, and diminution of propagation of synaptic impulses. These actions are thought to be important in the prevention of seizure spread in the intact brain. In addition, increased potassium conductance and modulation of high-voltage activated calcium channels may contribute to the anticonvulsant effects of the drug. No significant interactions of oxcarbazepine or MHD with brain neurotransmitter or modulator receptor sites have been demonstrated.
Record name Oxcarbazepine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00776
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name OXCARBAZEPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7524
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

Crystals from ethanol, White to faintly orange crystalline powder

CAS No.

28721-07-5
Record name Oxcarbazepine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=28721-07-5
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Oxcarbazepine [USAN:USP:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0028721075
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Oxcarbazepine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00776
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name OXCARBAZEPINE
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=758693
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Oxcarbazepine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID0045703
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Oxcarbazepine
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.044.702
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name OXCARBAZEPINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/VZI5B1W380
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name OXCARBAZEPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7524
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Oxcarbazepine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014914
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

215-216 °C, 215.5 °C
Record name OXCARBAZEPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7524
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Oxcarbazepine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014914
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

The carbamoylation reaction was performed as in Example 1. After about 7–8 hours of stirring the carbamoylation reaction mixture (containing pyridinium bromide, 10-methoxy-5H-dibenz[b,f]azepine, water, toluene, and NaOCN) at room temperature (22° C.), the mixture was heated to 55–60° C., and 500 ml of 10% HCl was added drop-wise and carefully. The reaction mixture was warmed to reflux (89° C.) for 3–4 hours, and then worked up and purified as in Example 1. 32.8 g (58% yield) of crude oxcarbazepine was obtained. The crude afforded 24.9 g (44% overall yield) of pure oxcarbazepine.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
NaOCN
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One
Name
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One
Name
Quantity
500 mL
Type
reactant
Reaction Step Two
Yield
58%

Synthesis routes and methods II

Procedure details

100 g of 10-methoxycarbamazepine in 1000 ml water and 69.24 g of oxalic acid solution were heated to 90° C. and maintained for about 17 hrs. After completion of the reaction the reaction mixture was cooled to room temperature (RT). The resulting reaction mass was filtered and washed with 1000 ml of DM water. The wet material obtained was charged with isopropyl alcohol and DM water. The obtained reaction mixture was heated to reflux for about 2 h. The reaction mixture was cooled to 15-25° C., filtered and washed with 100 ml of IPA-water mixture. The resulting compound is dried at 60° C. for 6 h to produce 90 g of Oxcarbazepine.
Quantity
100 g
Type
reactant
Reaction Step One
Quantity
69.24 g
Type
reactant
Reaction Step One
Name
Quantity
1000 mL
Type
solvent
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Name
Quantity
0 (± 1) mol
Type
solvent
Reaction Step Two

Synthesis routes and methods III

Procedure details

A mixture of 100 gms of 10-methoxyiminostilbene in 1000 mL of toluene containing 351 gms of para-chlorobenzoic acid and 370 gms of sodium cyanate were heated to reflux and refluxed for 12 hours. The reaction mixture was then cooled to room temperature and filtered. The clear toluene filtrate was then washed with 5% sodium carbonate solution followed by water. The toluene layer was then added to 1000 mL of 2N hydrochloric acid and the mixture was heated at 75-80° C. for a period of 2 hours under good agitation. It was then cooled to 0-5° C., maintained for 2 hours and the product oxcarbazepine was separated by filtration. This was then purified once in a dichloromethane methanol mixture to furnish 44 gms of pure oxcarbazepine.
Quantity
100 g
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
sodium cyanate
Quantity
370 g
Type
reactant
Reaction Step One
Quantity
1000 mL
Type
solvent
Reaction Step One

Synthesis routes and methods IV

Procedure details

A mixture of 100 gms of 10-methoxyiminostilbene in 2000 mL of toluene containing 274 gms of benzoic acid and 370 gms of sodium cyanate were heated to reflux temperature under stirring and maintained for 12 hours. The reaction mixture was then cooled to room temperature and filtered. The clear toluene filtrate was washed with 5% sodium carbonate solution followed by water. The toluene layer was then added to 1000 mL of 2N hydrochloric acid and the mixture was heated at 75-90° C. for a period of 2 hours under good agitation. It was then cooled to 0-5° C., maintained for 2 hours and the product oxcarbazepine was separated by filtration. This was then purified once in a dichloromethane:methanol mixture to furnish 46 gms of pure oxcarbazepine. Purity was determined by HPLC to be 99.45%.
Quantity
100 g
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
sodium cyanate
Quantity
370 g
Type
reactant
Reaction Step One
Quantity
2000 mL
Type
solvent
Reaction Step One

Synthesis routes and methods V

Procedure details

A mixture of 100 gms of 10-methoxyiminostilbene in 1000 mL of toluene containing 430 gms of 2,4-dichlorobenzoic acid and 370 gms of sodium cyanate were heated to reflux and refluxed for 6 hours. The reaction mixture was then cooled to room temperature and filtered. The clear toluene filtrate was then washed with 5% sodium carbonate solution followed by water. The toluene layer was then added to 1000 mL of 2N hydrochloric acid and the mixture was heated at 75-80° C. for a period of 2 hours under good agitation. It was then cooled to 0-5° C., maintained for 2 hours and the product oxcarbazepine was separated by filtration. This was then purified once in a dichloromethane:methanol mixture to furnish 40 gms of pure oxcarbazepine.
Quantity
100 g
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
sodium cyanate
Quantity
370 g
Type
reactant
Reaction Step One
Quantity
1000 mL
Type
solvent
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Oxcarbazepine
Reactant of Route 2
Reactant of Route 2
Oxcarbazepine
Reactant of Route 3
Oxcarbazepine
Reactant of Route 4
Oxcarbazepine
Reactant of Route 5
Oxcarbazepine
Reactant of Route 6
Reactant of Route 6
Oxcarbazepine

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。