molecular formula C23H45N5O14 B1678474 パロモマイシン CAS No. 7542-37-2

パロモマイシン

カタログ番号: B1678474
CAS番号: 7542-37-2
分子量: 615.6 g/mol
InChIキー: UOZODPSAJZTQNH-LSWIJEOBSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

作用機序

Target of Action

Paromomycin primarily targets the 16S ribosomal RNA of bacteria . This RNA is a component of the small (30S) subunit of the bacterial ribosome, which is involved in protein synthesis .

Mode of Action

Paromomycin inhibits protein synthesis by binding to the 16S ribosomal RNA . The bacterial proteins are synthesized by ribosomal RNA complexes, which are composed of two subunits, a large subunit (50S) and a small (30S) subunit, forming a 70S ribosomal subunit . The tRNA binds to the top of this ribosomal structure . By binding to the 16S ribosomal RNA, paromomycin interferes with this process, leading to the production of defective proteins .

Biochemical Pathways

It is known that the drug interferes with protein synthesis, which is a crucial process for bacterial survival . This interference leads to the production of defective proteins, which can disrupt various cellular functions and eventually lead to bacterial death .

Pharmacokinetics

Paromomycin is poorly absorbed in the gastrointestinal tract . This characteristic makes it particularly useful for treating intestinal infections, as the drug remains in the gut where it can act directly on the infecting organisms . The drug is excreted in feces .

Result of Action

The primary result of paromomycin’s action is the death of the bacteria. By inhibiting protein synthesis, paromomycin causes the production of defective proteins. The accumulation of these defective proteins disrupts various cellular functions, leading to bacterial death .

Action Environment

The action of paromomycin is influenced by the environment in which it is used. For instance, in the gastrointestinal tract, where it is poorly absorbed, paromomycin can act directly on the infecting organisms . .

生化学分析

Biochemical Properties

Paromomycin inhibits protein synthesis by binding to 16S ribosomal RNA . This interaction with the ribosomal RNA complexes, which are composed of two subunits, disrupts the formation of bacterial proteins . The nature of these interactions is such that it closely parallels the in vitro and in vivo antibacterial action of neomycin .

Cellular Effects

Paromomycin has a broad spectrum of activity against various types of cells, including Gram-negative and Gram-positive bacteria . It increases the error rate in ribosomal translation, leading to the production of defective polypeptide chains . This continuous production of defective proteins eventually leads to bacterial death .

Molecular Mechanism

The mechanism of action of Paromomycin involves its binding to a RNA loop, where residues A1492 and A1493 are usually stacked, and expels these two residues . These two residues are involved in the detection of correct Watson-Crick pairing between the codon and anti-codon .

Temporal Effects in Laboratory Settings

The effects of Paromomycin over time in laboratory settings have not been extensively studied. It is known that the most common adverse effects associated with Paromomycin sulfate are abdominal cramps, diarrhea, heartburn, nausea, and vomiting . Long-term use of Paromomycin increases the risk for bacterial or fungal infection .

Dosage Effects in Animal Models

The effects of Paromomycin vary with different dosages in animal models . For example, it has been shown to be effective at a dosage of 50mg/kg/day or more for ileal infection and 200mg/kg/day or more for caecal infection . The effect was thus shown to differ according to the anatomical site of the infection .

Metabolic Pathways

The metabolic pathways that Paromomycin is involved in primarily relate to its role as an aminoglycoside antibiotic. It inhibits protein synthesis by binding to 16S ribosomal RNA

Transport and Distribution

Paromomycin is poorly absorbed after oral administration, with almost 100% of the drug recoverable in the stool This suggests that its transport and distribution within cells and tissues are limited

化学反応の分析

Paromomycin undergoes various chemical reactions, including oxidation and substitution reactions. The compound contains oxidizable groups such as amines and hydroxyls, which can be detected electrochemically . Common reagents used in these reactions include oxidizing agents and derivatization agents for detection purposes. The major products formed from these reactions depend on the specific conditions and reagents used.

類似化合物との比較

Paromomycin is similar to other aminoglycoside antibiotics such as neomycin and streptomycin . it has unique properties that make it effective against a broader range of parasitic infections. Unlike some other aminoglycosides, paromomycin is poorly absorbed in the gastrointestinal tract, making it particularly useful for treating intestinal infections . Additionally, paromomycin has been shown to have fewer systemic side effects compared to pentavalent antimony compounds used in the treatment of leishmaniasis .

Similar Compounds

  • Neomycin
  • Streptomycin
  • Gentamicin
  • Tobramycin

Paromomycin’s unique properties and broad-spectrum activity make it a valuable antibiotic in both clinical and research settings.

特性

IUPAC Name

(2S,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-[(2R,3S,4R,5S)-5-[(1R,2R,3S,5R,6S)-3,5-diamino-2-[(2S,3R,4R,5S,6R)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C23H45N5O14/c24-2-7-13(32)15(34)10(27)21(37-7)41-19-9(4-30)39-23(17(19)36)42-20-12(31)5(25)1-6(26)18(20)40-22-11(28)16(35)14(33)8(3-29)38-22/h5-23,29-36H,1-4,24-28H2/t5-,6+,7+,8-,9-,10-,11-,12+,13-,14-,15-,16-,17-,18-,19-,20-,21-,22-,23+/m1/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

UOZODPSAJZTQNH-LSWIJEOBSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1C(C(C(C(C1N)OC2C(C(C(C(O2)CO)O)O)N)OC3C(C(C(O3)CO)OC4C(C(C(C(O4)CN)O)O)N)O)O)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

C1[C@H]([C@@H]([C@H]([C@@H]([C@H]1N)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)O)N)O[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O[C@@H]4[C@@H]([C@H]([C@@H]([C@@H](O4)CN)O)O)N)O)O)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C23H45N5O14
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Related CAS

1263-89-4 (sulfate), 35665-49-7 (sulfate (2:5)), 7205-49-4 (sulfate (1:1))
Record name Paromomycin [INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0007542372
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.

DSSTOX Substance ID

DTXSID8023424
Record name Paromomycin
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8023424
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

615.6 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Paromomycin
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0015490
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

7.97e+01 g/L
Record name Paromomycin
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0015490
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Paromomycin inhibits protein synthesis by binding to 16S ribosomal RNA. Bacterial proteins are synthesized by ribosomal RNA complexes which are composed of 2 subunits, a large subunit (50s) and small (30s) subunit, which forms a 70s ribosomal subunit. tRNA binds to the top of this ribosomal structure. Paramomycin binds to the A site, which causes defective polypeptide chains to be produced. Continuous production of defective proteins eventually leads to bacterial death.
Record name Paromomycin
Source DrugBank
URL https://www.drugbank.ca/drugs/DB01421
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

7542-37-2, 1263-89-4
Record name Paromomycin
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=7542-37-2
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Paromomycin [INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0007542372
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Paromomycin
Source DrugBank
URL https://www.drugbank.ca/drugs/DB01421
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Paromomycin
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8023424
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Paromomycin
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.028.567
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name PAROMOMYCIN
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/61JJC8N5ZK
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Paromomycin
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0015490
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。