REACTION_CXSMILES
|
[Br:1][C:2]1[CH:7]=[CH:6][C:5]([NH:8][C:9]2[C:10]([C:20]([OH:22])=O)=[CH:11][C:12]3[N:16]([CH3:17])[CH:15]=[N:14][C:13]=3[C:18]=2[F:19])=[C:4]([Cl:23])[CH:3]=1.[CH:24]([O:26][CH2:27][CH2:28][O:29][NH2:30])=[CH2:25].C1C=CC2N(O)N=NC=2C=1.C(N(CC)CC)C.CCN=C=NCCCN(C)C.Cl>CN(C)C=O.C(OCC)(=O)C>[CH:24]([O:26][CH2:27][CH2:28][O:29][NH:30][C:20]([C:10]1[C:9]([NH:8][C:5]2[CH:6]=[CH:7][C:2]([Br:1])=[CH:3][C:4]=2[Cl:23])=[C:18]([F:19])[C:13]2[N:14]=[CH:15][N:16]([CH3:17])[C:12]=2[CH:11]=1)=[O:22])=[CH2:25] |f:4.5|
|
Name
|
|
Quantity
|
2 g
|
Type
|
reactant
|
Smiles
|
BrC1=CC(=C(C=C1)NC=1C(=CC2=C(N=CN2C)C1F)C(=O)O)Cl
|
Name
|
|
Quantity
|
0.776 g
|
Type
|
reactant
|
Smiles
|
C(=C)OCCON
|
Name
|
|
Quantity
|
0.88 g
|
Type
|
reactant
|
Smiles
|
C=1C=CC2=C(C1)N=NN2O
|
Name
|
|
Quantity
|
1.61 mL
|
Type
|
reactant
|
Smiles
|
C(C)N(CC)CC
|
Name
|
|
Quantity
|
1.3 g
|
Type
|
reactant
|
Smiles
|
CCN=C=NCCCN(C)C.Cl
|
Name
|
|
Quantity
|
52 mL
|
Type
|
solvent
|
Smiles
|
CN(C=O)C
|
Name
|
|
Quantity
|
0 (± 1) mol
|
Type
|
solvent
|
Smiles
|
C(C)(=O)OCC
|
Control Type
|
AMBIENT
|
Type
|
CUSTOM
|
Details
|
stirred at room temperature for 48 hours
|
Rate
|
UNSPECIFIED
|
RPM
|
0
|
Conditions are dynamic
|
1
|
Details
|
See reaction.notes.procedure_details.
|
Type
|
WASH
|
Details
|
washed with water (3×), saturated potassium carbonate (2×), saturated ammonium chloride (2×), brine
|
Type
|
DRY_WITH_MATERIAL
|
Details
|
dried (Na2SO4)
|
Type
|
CONCENTRATION
|
Details
|
concentrated under reduced pressure to an off-white solid
|
Reaction Time |
48 h |
Name
|
|
Type
|
product
|
Smiles
|
C(=C)OCCONC(=O)C1=CC2=C(N=CN2C)C(=C1NC1=C(C=C(C=C1)Br)Cl)F
|
Type | Value | Analysis |
---|---|---|
AMOUNT: MASS | 2.18 g | |
YIELD: PERCENTYIELD | 90% | |
YIELD: CALCULATEDPERCENTYIELD | 90.1% |
Source
|
Open Reaction Database (ORD) |
Description
|
The Open Reaction Database (ORD) is an open-access schema and infrastructure for structuring and sharing organic reaction data, including a centralized data repository. The ORD schema supports conventional and emerging technologies, from benchtop reactions to automated high-throughput experiments and flow chemistry. Our vision is that a consistent data representation and infrastructure to support data sharing will enable downstream applications that will greatly improve the state of the art with respect to computer-aided synthesis planning, reaction prediction, and other predictive chemistry tasks. |