molecular formula C15H27N3O9P2 B1678103 磷酸伯氨喹 CAS No. 63-45-6

磷酸伯氨喹

货号: B1678103
CAS 编号: 63-45-6
分子量: 455.34 g/mol
InChI 键: GJOHLWZHWQUKAU-UHFFFAOYSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

准备方法

合成路线和反应条件

磷酸伯氨喹是通过一系列化学反应从 8-氨基喹啉开始合成的。 反应条件通常涉及使用强碱和有机溶剂来促进取代反应 .

工业生产方法

磷酸伯氨喹的工业生产涉及使用优化反应条件的大规模合成,以确保高产率和纯度。 该过程包括通过结晶和过滤技术纯化最终产品 .

属性

IUPAC Name

4-N-(6-methoxyquinolin-8-yl)pentane-1,4-diamine;phosphoric acid
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C15H21N3O.2H3O4P/c1-11(5-3-7-16)18-14-10-13(19-2)9-12-6-4-8-17-15(12)14;2*1-5(2,3)4/h4,6,8-11,18H,3,5,7,16H2,1-2H3;2*(H3,1,2,3,4)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

GJOHLWZHWQUKAU-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC(CCCN)NC1=C2C(=CC(=C1)OC)C=CC=N2.OP(=O)(O)O.OP(=O)(O)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C15H27N3O9P2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Related CAS

90-34-6 (Parent)
Record name Primaquine phosphate [USP]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000063456
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.

DSSTOX Substance ID

DTXSID6045248
Record name Primaquine diphosphate
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6045248
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

455.34 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

63-45-6
Record name Primaquine phosphate [USP]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000063456
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Primaquine diphosphate
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6045248
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Primaquine bis(phosphate)
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.000.510
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name PRIMAQUINE PHOSPHATE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/H0982HF78B
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Primaquine phosphate
Reactant of Route 2
Primaquine phosphate
Reactant of Route 3
Primaquine phosphate
Reactant of Route 4
Primaquine phosphate
Reactant of Route 5
Primaquine phosphate
Reactant of Route 6
Reactant of Route 6
Primaquine phosphate
Customer
Q & A

Q1: What is the primary mechanism of action of Primaquine phosphate against malaria?

A1: While the exact mechanism remains unclear, Primaquine phosphate is known for its unique ability to target the dormant liver stage of Plasmodium vivax and Plasmodium ovale infections, called hypnozoites. [] This is crucial in preventing relapses, which are a significant challenge in treating these malaria species. []

Q2: How does Primaquine phosphate exert its anti-malarial effects?

A2: Several hypotheses exist regarding Primaquine phosphate's mechanism:

  • Interference with Parasite Mitochondrial Function: It is suggested that Primaquine phosphate disrupts the electron transport chain in parasite mitochondria, ultimately leading to parasitic death. [, ]
  • Formation of Reactive Oxygen Species: Primaquine phosphate may generate reactive oxygen species, causing oxidative damage within the parasite. []
  • Inhibition of Parasite Nucleic Acid Synthesis: It has been proposed that Primaquine phosphate interferes with the synthesis of DNA and RNA in the parasite. []

Q3: What are the downstream effects of Primaquine phosphate on Plasmodium parasites?

A3: Primaquine phosphate's downstream effects are primarily linked to the proposed mechanisms mentioned above. These effects ultimately lead to the death of the parasite, effectively clearing the liver stage infection and preventing relapse.

Q4: What is the molecular formula and weight of Primaquine phosphate?

A4: The molecular formula of Primaquine phosphate is C15H21N3O·H3PO4. Its molecular weight is 365.3 g/mol.

Q5: Is there any spectroscopic data available for Primaquine phosphate?

A5: Yes, several studies have investigated Primaquine phosphate's spectroscopic properties: * FTIR spectroscopy: Used to identify characteristic functional groups and analyze potential interactions between Primaquine phosphate and excipients in formulations. [, ]* UV-Vis spectroscopy: Employed to assess the stability of Primaquine phosphate under various storage conditions. []

Q6: Does Primaquine phosphate exhibit any catalytic properties?

A6: While Primaquine phosphate is primarily recognized for its antimalarial activity, certain research explores its use as a spectrophotometric reagent for detecting trace amounts of gold. [] This application leverages Primaquine phosphate's ability to undergo oxidation by gold (III) ions in a sulfuric acid medium, forming a colored radical measurable at 550 nm.

Q7: Have there been any computational studies on Primaquine phosphate?

A7: While limited information is available on comprehensive computational modeling of Primaquine phosphate itself, some studies have focused on calculating physical parameters like molecular polarizability, diamagnetic susceptibility, and molecular electron ionization cross-section (Q). [] These parameters have been explored for potential correlations with drug activity, plasma protein binding, bioavailability, and dosage.

Q8: What formulation strategies have been investigated to enhance Primaquine phosphate's stability, solubility, or bioavailability?

A8: Several approaches have been explored to optimize Primaquine phosphate delivery:

  • Solid Dispersions: Formulating Primaquine phosphate as a solid dispersion using carriers like mono ammonium glycyrrhizinate pentahydrate has been shown to effectively mask its bitter taste while also enhancing dissolution and potentially improving bioavailability. [, ]
  • Nanoparticles: Encapsulating Primaquine phosphate within nanoparticles, such as PLGA nanoparticles and PEGylated galactosylated nano lipid carriers, has shown promise in enhancing drug loading, prolonging drug release, and potentially improving its targeting to the liver. [, ] These strategies aim to improve the drug's therapeutic efficacy and minimize potential side effects.

Q9: What are the key considerations for Safety, Health, and Environment (SHE) regulations concerning Primaquine phosphate?

A9: While the provided excerpts do not explicitly detail SHE regulations, responsible handling and disposal of Primaquine phosphate are crucial due to its potential environmental impacts.

Q10: What is the pharmacokinetic profile of Primaquine phosphate?

A10: Primaquine phosphate exhibits a relatively short half-life, necessitating frequent administration and potentially contributing to adverse effects and patient non-compliance. [] Various studies highlighted the pharmacokinetic properties of Primaquine phosphate:

  • Absorption and Metabolism: Primaquine phosphate is well-absorbed after oral administration, and its metabolism involves the cytochrome P450 enzyme, particularly CYP2D6. []
  • Bioavailability and Distribution: Studies have explored methods to improve Primaquine phosphate's bioavailability and target its delivery to the liver, the primary site of hypnozoite residence. []
  • Excretion: The drug and its metabolites are primarily excreted in the urine. []

Q11: What is the relationship between Primaquine phosphate's pharmacokinetics and its pharmacodynamics?

A11: Research indicates a link between impaired CYP2D6 activity and decreased efficacy of Primaquine phosphate in achieving radical cure for P. vivax malaria. [] Individuals with compromised CYP2D6 activity, either due to genetic variations or drug interactions, may experience a higher risk of relapse.

Q12: What evidence supports the in vitro and in vivo efficacy of Primaquine phosphate?

A12: * In vitro: Studies demonstrate Primaquine phosphate's efficacy against Toxoplasma gondii tachyzoites in vitro, inhibiting their growth at specific concentrations. []* In vivo: In animal models, specifically Plasmodium berghei-infected mice, Primaquine phosphate formulated as solid lipid nanoparticles exhibited enhanced effectiveness compared to conventional oral doses. [] This highlights the potential of nanoformulations in improving the drug's therapeutic index.

Q13: What are the known mechanisms of resistance to Primaquine phosphate?

A13: While the precise mechanisms of resistance to Primaquine phosphate are not fully understood, they are thought to involve alterations in parasite drug uptake, drug target modifications, or enhanced detoxification pathways. []

Q14: Is there evidence of cross-resistance between Primaquine phosphate and other antimalarials?

A14: Although the provided excerpts do not directly address cross-resistance, it's a concern with antimalarial drugs. The emergence of resistance to one antimalarial can potentially reduce the efficacy of others with similar mechanisms of action.

Q15: What are the known toxicological effects and safety concerns associated with Primaquine phosphate?

A15: Primaquine phosphate can cause hemolytic anemia, particularly in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. [, , , ] Screening for G6PD deficiency before Primaquine phosphate administration is crucial to prevent this serious adverse effect. []

Q16: What drug delivery strategies have been explored to improve Primaquine phosphate's targeting to the liver?

A16: Researchers are investigating nanocarriers, like galactose-anchored gelatin nanoparticles, to specifically deliver Primaquine phosphate to the liver. [] This approach exploits the asialoglycoprotein receptor expressed on hepatocytes for targeted drug delivery.

Q17: Are there any biomarkers associated with Primaquine phosphate efficacy or toxicity?

A17: CYP2D6 genotype and phenotype can serve as biomarkers to predict the efficacy of Primaquine phosphate. Impaired CYP2D6 activity is linked to a higher relapse risk, indicating potential treatment failure. [] G6PD deficiency is a crucial biomarker for Primaquine phosphate-induced hemolytic anemia. [, , , ]

Q18: What analytical techniques are commonly employed in Primaquine phosphate research?

A18: Several analytical methods are crucial in Primaquine phosphate research:* High-Performance Liquid Chromatography (HPLC): A primary technique for quantitative determination of Primaquine phosphate in various matrices, including tablets, biological samples, and formulations. [, , , ]* Spectrophotometry: Employed to determine Primaquine phosphate concentrations by measuring the absorbance of colored complexes formed with specific reagents. [, , , ]* Dissolution Testing: Used to evaluate the release rate of Primaquine phosphate from various formulations, such as tablets, and assess how different factors impact its dissolution profile. []

Q19: Are there any viable alternatives or substitutes for Primaquine phosphate in treating malaria?

A19: While Primaquine phosphate remains a crucial drug for preventing relapse in specific malaria species, researchers are exploring alternative therapies: * Tafenoquine: A single-dose 8-aminoquinoline antimalarial drug with a longer half-life than Primaquine phosphate, potentially improving patient adherence. []

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。