molecular formula C29H31N7O B000729 伊马替尼 CAS No. 152459-95-5

伊马替尼

货号: B000729
CAS 编号: 152459-95-5
分子量: 493.6 g/mol
InChI 键: KTUFNOKKBVMGRW-UHFFFAOYSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

作用机制

Target of Action:

Imatinib’s primary target is the BCR-ABL tyrosine kinase. This enzyme is constitutively active due to the Philadelphia chromosome abnormality found in chronic myeloid leukemia (CML). The BCR-ABL kinase drives uncontrolled cell proliferation and survival, contributing to the progression of CML .

Mode of Action:

Imatinib inhibits the BCR-ABL tyrosine kinase by binding to its active site. By doing so, it prevents the phosphorylation of downstream substrates, disrupting the signaling cascade that promotes cell growth and survival. Essentially, Imatinib puts the brakes on the abnormal protein’s activity, halting the division of cancer cells and inducing apoptosis (cell death) .

Biochemical Pathways:

The affected pathways include those related to cell cycle regulation, proliferation, and survival. By blocking BCR-ABL, Imatinib disrupts the ABL kinase’s overexpression seen in various tumors. This inhibition leads to downstream effects, ultimately curbing the growth of leukemic cells .

Pharmacokinetics:

Result of Action:

Imatinib’s action results in:

Action Environment:

Environmental factors, such as drug interactions (e.g., CYP3A4 inhibitors), affect Imatinib’s efficacy and stability. Maintaining consistent drug levels is crucial for optimal therapeutic outcomes .

Remember, Imatinib’s success story exemplifies the power of targeted therapies tailored to individual cancer genetics. 🌿🧬 . If you have any more questions or need further details, feel free to ask!

生化分析

Biochemical Properties

Imatinib interacts with several enzymes and proteins. It is a tyrosine kinase inhibitor that targets multiple tyrosine kinases such as CSF1R, ABL, c-KIT, FLT3, and PDGFR-β . These interactions inhibit the tyrosine kinases, disrupting the signaling pathways they control, which can slow growth or result in programmed cell death of certain types of cancer cells .

Cellular Effects

Imatinib has significant effects on various types of cells and cellular processes. It influences cell function by impacting cell signaling pathways, gene expression, and cellular metabolism . For instance, it has been shown to switch from glycolysis to the tricarboxylic acid cycle, upregulate pentose phosphate pathway-associated oxidative pathways, and cause internal translocation of glucose transporters .

Molecular Mechanism

Imatinib exerts its effects at the molecular level primarily by inhibiting the Bcr-Abl tyrosine-kinase . This inhibition disrupts the signaling pathways controlled by these kinases, leading to slowed growth or programmed cell death of certain types of cancer cells .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of imatinib change over time. Imatinib is rapidly absorbed following oral administration, achieving pharmacologically relevant concentrations in the plasma, with a half-life of approximately 1.3 hours . It has been shown that continuous inhibition of BCR-ABL kinase activity is needed to achieve maximal antitumor effects .

Dosage Effects in Animal Models

The effects of imatinib vary with different dosages in animal models. For instance, once-daily intraperitoneal treatment using doses of imatinib from 2.5 to 50 mg/kg caused dose-dependent inhibition of tumor growth .

Metabolic Pathways

Imatinib is involved in several metabolic pathways. It is primarily metabolized by the CYP3A4 isoform of CYP450 . Other enzymes such as flavin-containing monooxygenase 3 (FMO3), and uridine 5’-diphospho-glucuronosyltransferase (UGT) also metabolize imatinib .

Transport and Distribution

Imatinib is transported and distributed within cells and tissues. It is the only tyrosine kinase inhibitor whose absorption depends on both influx (OCT1 and OATP1A2) and efflux (ABCB1 and ABCG2) transporters .

Subcellular Localization

Imatinib is sequestered in the lysosomes within cells . This lysosomal sequestration determines the intracellular levels of imatinib .

属性

IUPAC Name

4-[(4-methylpiperazin-1-yl)methyl]-N-[4-methyl-3-[(4-pyridin-3-ylpyrimidin-2-yl)amino]phenyl]benzamide
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C29H31N7O/c1-21-5-10-25(18-27(21)34-29-31-13-11-26(33-29)24-4-3-12-30-19-24)32-28(37)23-8-6-22(7-9-23)20-36-16-14-35(2)15-17-36/h3-13,18-19H,14-17,20H2,1-2H3,(H,32,37)(H,31,33,34)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

KTUFNOKKBVMGRW-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C29H31N7O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID3037125
Record name Imatinib
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID3037125
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

493.6 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Imatinib
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014757
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

Very soluble in water at pH < 5.5 (mesylate salt), 1.46e-02 g/L
Record name Imatinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00619
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Imatinib
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014757
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Imatinib mesylate is a protein-tyrosine kinase inhibitor that inhibits the BCR-ABL tyrosine kinase, the constitutively active tyrosine kinase created by the Philadelphia chromosome abnormality in CML.Although the function of normal BCR is still unclear, ABL activation is overexpressed in various tumors and is heavily implicated in cancer cells growth and survival. Imatinib inhibits the BCR-ABL protein by binding to the ATP pocket in the active site, thus preventing downstream phosphorylation of target protein. Imatinib is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-Kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib inhibits proliferation and induces apoptosis in GIST cells, which express an activating c-Kit mutation.
Record name Imatinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00619
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

152459-95-5
Record name Imatinib
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=152459-95-5
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Imatinib [INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0152459955
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Imatinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00619
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Imatinib
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759854
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Imatinib
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=743414
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Imatinib
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID3037125
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name IMATINIB
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/BKJ8M8G5HI
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Imatinib
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014757
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

226 °C (mesylate salt)
Record name Imatinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00619
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Imatinib
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014757
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

To a mixture of 4-(3-pyridyl)-2-pyrimidine-amine (172.2 mg, 1.0 mmol), N-(3-bromo-4-methyl-phenyl)-4-(4-methyl-piperazin-1-ylmethyl)-benzamide (402.4 mg, 1.0 mmol) and sodium tert.-butylate (144.2 mg, 1.5 mmol) is added a mixture of rac-BINAP (31.2 mg, 0.050 mmol) and Pd2(dba)3*CHCl3 (13 mg, 0.013 mmol) under argon. After addition of 3 ml of xylene the suspension is sonicated for 10 minutes then stirred for 5 hours under reflux. After cooling to room temperature, water (10 ml) is added to the dark brown oil and the product extracted 4 times with methylene chloride (10 ml each). The combined organic extracts are dried over MgSO4 and concentrated in vacuo. The brown oil is purified by flash-chromatography (SiO2, methanol). The product, a pale yellow solid is dissolved in methylene chloride, filtered and concentrated in vacuo. Yield: 484.3 mg of the title compound, 72% of theory, (99.9% area by HPLC). The product contains typically roughly 10% of isomers which can be eliminated by preparative reversed phase chromatography.
Quantity
172.2 mg
Type
reactant
Reaction Step One
Name
N-(3-bromo-4-methyl-phenyl)-4-(4-methyl-piperazin-1-ylmethyl)-benzamide
Quantity
402.4 mg
Type
reactant
Reaction Step One
[Compound]
Name
sodium tert.-butylate
Quantity
144.2 mg
Type
reactant
Reaction Step One
Quantity
31.2 mg
Type
reactant
Reaction Step Two
Quantity
13 mg
Type
catalyst
Reaction Step Two
Quantity
3 mL
Type
reactant
Reaction Step Three

Synthesis routes and methods II

Procedure details

A suspension of N-(3-guanidino-4-methyl-phenyl)-4-(4-methyl-piperazin-1-ylmethyl)-benzamide (30 g, 79 mmol) in n-butanol (150 ml) at 120° C. under an atmosphere of nitrogen is treated with 3-dimethylamino-1-pyridin-3-yl-propenone (15.3 g, 87 mmol). The resulting suspension is heated at 150° C. for 5 hrs. The reaction mixtures becomes a homogeneous deep orange solution and dimethylamine is removed by the distillation of n-butanol (130 ml). n-Butanol (20 ml) is added during the distillation. Butyl acetate (60 ml) is added dropwise at 100° C. and the solution is cooled to 0° C. within 1 hr and stirred at 0° C. for 16 hrs. The resulting deep orange suspension is filtered off with suction, the isolated solid is washed with n-butanol (2×50 ml) and water (2×50 ml) and dried in vacuo at 60° C. Yield: 36.4 g of the title compound, 93% based on theory, as off-whitecrystals. (99.6% area by HPLC).
Quantity
150 mL
Type
solvent
Reaction Step One
[Compound]
Name
3-dimethylamino-1-pyridin-3-yl-propenone
Quantity
15.3 g
Type
reactant
Reaction Step Two

Synthesis routes and methods III

Procedure details

The imatinib mesylate salt (1) (1.01 g, 1.71 mmol) prepared in Example 1 was added to 250 mL of dichloromethane to form a suspension of imatinib mesylate. 50 mL of 10% saturated aqueous NaHCO3 was added and mixed well with the suspension of imatinib mesylate in dichloromethane to produce the free base of imatinib in the organic layer (dichloromethane). The emulsion formed from the aqueous NaHCO3 and the dichloromethoane was removed by filtration, producing an organic layer of dichloromethane containing the imatinib as the free base and an aqueous layer. The organic layer of dicholomethane containing imatninb as the free base was separated from the aqueous layer. The organic layer was dried over Na2SO4/MgSO4. To isolate the imatinib free base, the organic layer (dichloromethane) was filtered to remove the Na2SO4/MgSO4 and then stipped off, producing a solid containing the free base of imatinib. Toluene was added to the solid containing imatinib free base and flash evaporated three times and then dried under vacuum to remove any residual water. The free base of imatinib was obtained as a white solid and used in example 3. The free base of imatinib exhibited 1H, 13C NMR and APCI data consistent with the structure. NMR assignments were based on a DQF-COSY experiment.
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One
Quantity
1.01 g
Type
reactant
Reaction Step Two
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Three
Quantity
50 mL
Type
reactant
Reaction Step Four
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Five
Quantity
0 (± 1) mol
Type
solvent
Reaction Step Five
Quantity
250 mL
Type
solvent
Reaction Step Six

Synthesis routes and methods IV

Procedure details

Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Synthesis routes and methods V

Procedure details

Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Imatinib
Reactant of Route 2
Reactant of Route 2
Imatinib
Reactant of Route 3
Reactant of Route 3
Imatinib
Reactant of Route 4
Reactant of Route 4
Imatinib
Reactant of Route 5
Reactant of Route 5
Imatinib
Reactant of Route 6
Reactant of Route 6
Imatinib

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。