molecular formula C7H19N3 B8084160 Spermidine-d6

Spermidine-d6

Katalognummer: B8084160
Molekulargewicht: 151.28 g/mol
InChI-Schlüssel: ATHGHQPFGPMSJY-RCKJUGKUSA-N
Achtung: Nur für Forschungszwecke. Nicht für den menschlichen oder tierärztlichen Gebrauch.
Auf Lager
  • Klicken Sie auf QUICK INQUIRY, um ein Angebot von unserem Expertenteam zu erhalten.
  • Mit qualitativ hochwertigen Produkten zu einem WETTBEWERBSFÄHIGEN Preis können Sie sich mehr auf Ihre Forschung konzentrieren.

Beschreibung

  • Herstellungsmethoden

      Synthesewege: Spermidin-d6 wird synthetisiert, indem deuteriummarkierte Vorläufer während seiner Bildung eingebaut werden.

      Reaktionsbedingungen: Die spezifischen Synthesewege und Bedingungen werden in den verfügbaren Informationen nicht angegeben.

      Industrielle Produktion: Details zu industriellen Produktionsmethoden sind spärlich.

  • Vorbereitungsmethoden

      Synthetic Routes: Spermidine-d6 is synthesized by incorporating deuterium-labeled precursors during its formation.

      Reaction Conditions: The specific synthetic route and conditions are not provided in the available information.

      Industrial Production: Details regarding industrial-scale production methods are scarce.

  • Analyse Chemischer Reaktionen

      Reaktionen: Spermidin-d6 kann verschiedene chemische Reaktionen eingehen, darunter Oxidation, Reduktion und Substitution.

      Häufige Reagenzien: Spezifische Reagenzien werden nicht erwähnt, aber typische Reaktionsbedingungen für Polyamine gelten.

      Hauptprodukte: Die Hauptprodukte hängen von der jeweiligen Reaktion und den Ausgangsmaterialien ab.

  • Wissenschaftliche Forschungsanwendungen

      Chemie: Spermidin-d6 unterstützt die Erforschung des Polyamin-Stoffwechsels und verwandter Stoffwechselwege.

      Biologie: Es trägt zur Forschung über Zellwachstum, Autophagie und Alterung bei.

      Medizin: Spermidin hat potenzielle therapeutische Wirkungen, wie z. B. die Förderung der Langlebigkeit und die Reduzierung der Neurodegeneration.

      Industrie: Formulierungen, die Spermidin enthalten, werden als Nahrungsergänzungsmittel verwendet.

  • Wirkmechanismus

    • Spermidin beeinflusst verschiedene molekulare Ziele und Stoffwechselwege.
    • Es induziert Autophagie, verstärkt antioxidative Abwehrmechanismen und moduliert die Genexpression.
    • Die genauen Mechanismen sind komplex und kontextabhängig.
  • Wirkmechanismus

    • Spermidine influences various molecular targets and pathways.
    • It induces autophagy, enhances antioxidant defenses, and modulates gene expression.
    • The exact mechanisms are complex and context-dependent.
  • Vergleich Mit ähnlichen Verbindungen

      Ähnliche Verbindungen: Andere Polyamine wie Spermin und Putrescin weisen Ähnlichkeiten auf.

      Einzigartigkeit: Die Deuteriummarkierung von Spermidin-d6 unterscheidet es von natürlichem Spermidin.

    Eigenschaften

    IUPAC Name

    N'-(3-amino-1,1,2,2,3,3-hexadeuteriopropyl)butane-1,4-diamine
    Details Computed by LexiChem 2.6.6 (PubChem release 2019.06.18)
    Source PubChem
    URL https://pubchem.ncbi.nlm.nih.gov
    Description Data deposited in or computed by PubChem

    InChI

    InChI=1S/C7H19N3/c8-4-1-2-6-10-7-3-5-9/h10H,1-9H2/i3D2,5D2,7D2
    Details Computed by InChI 1.0.5 (PubChem release 2019.06.18)
    Source PubChem
    URL https://pubchem.ncbi.nlm.nih.gov
    Description Data deposited in or computed by PubChem

    InChI Key

    ATHGHQPFGPMSJY-RCKJUGKUSA-N
    Details Computed by InChI 1.0.5 (PubChem release 2019.06.18)
    Source PubChem
    URL https://pubchem.ncbi.nlm.nih.gov
    Description Data deposited in or computed by PubChem

    Canonical SMILES

    C(CCNCCCN)CN
    Details Computed by OEChem 2.1.5 (PubChem release 2019.06.18)
    Source PubChem
    URL https://pubchem.ncbi.nlm.nih.gov
    Description Data deposited in or computed by PubChem

    Isomeric SMILES

    [2H]C([2H])(C([2H])([2H])N)C([2H])([2H])NCCCCN
    Details Computed by OEChem 2.1.5 (PubChem release 2019.06.18)
    Source PubChem
    URL https://pubchem.ncbi.nlm.nih.gov
    Description Data deposited in or computed by PubChem

    Molecular Formula

    C7H19N3
    Details Computed by PubChem 2.1 (PubChem release 2019.06.18)
    Source PubChem
    URL https://pubchem.ncbi.nlm.nih.gov
    Description Data deposited in or computed by PubChem

    Molecular Weight

    151.28 g/mol
    Details Computed by PubChem 2.1 (PubChem release 2021.05.07)
    Source PubChem
    URL https://pubchem.ncbi.nlm.nih.gov
    Description Data deposited in or computed by PubChem

    Synthesis routes and methods I

    Procedure details

    In vivo, the first step in the biosynthesis of spermidine and spermine is decarboxylation of ornithine (2,5-diaminopentanoic acid, H2 N(CH2)3CH(NH2)CO2H) by ornithine decarboxylase (ODC) to yield putrescine. Spermidine is then synthesized by transfer of an activated aminopropyl group from S-adenosyl S-methyl homocystaeamine to putrescine. Spermine is formed by addition of a further aminopropyl group to spermidine.
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step One
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step One

    Synthesis routes and methods II

    Procedure details

    0.2 mM ea dATP, dGTP, dCTP, dTTP
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step One
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Two
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Three
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Four

    Synthesis routes and methods III

    Procedure details

    0.2 mM each DATP, dGTP, dCTP, dTTP
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step One
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Two
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Three
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Four

    Synthesis routes and methods IV

    Procedure details

    1 mM for each dATP, dCTP, dGTP
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step One
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Two
    Name
    Quantity
    0 (± 1) mol
    Type
    reactant
    Reaction Step Three

    Retrosynthesis Analysis

    AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

    One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

    Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

    Strategy Settings

    Precursor scoring Relevance Heuristic
    Min. plausibility 0.01
    Model Template_relevance
    Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
    Top-N result to add to graph 6

    Feasible Synthetic Routes

    Reactant of Route 1
    Reactant of Route 1
    Spermidine-d6
    Reactant of Route 2
    Reactant of Route 2
    Spermidine-d6
    Reactant of Route 3
    Reactant of Route 3
    Spermidine-d6
    Reactant of Route 4
    Spermidine-d6
    Reactant of Route 5
    Reactant of Route 5
    Spermidine-d6
    Reactant of Route 6
    Reactant of Route 6
    Spermidine-d6

    Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten

    Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.