molecular formula C16H19NO4 B1670607 Dihidrolicorina CAS No. 6271-21-2

Dihidrolicorina

Número de catálogo: B1670607
Número CAS: 6271-21-2
Peso molecular: 289.33 g/mol
Clave InChI: VJILFEGOWCJNIK-MGRBZGILSA-N
Atención: Solo para uso de investigación. No para uso humano o veterinario.
En Stock
  • Haga clic en CONSULTA RÁPIDA para recibir una cotización de nuestro equipo de expertos.
  • Con productos de calidad a un precio COMPETITIVO, puede centrarse más en su investigación.

Descripción

La dihidrolicorina es un alcaloide derivado de la planta Lycoris radiata. Es un derivado de la licorina, conocida por sus diversos efectos farmacológicos. La this compound ha sido estudiada por sus posibles aplicaciones terapéuticas, particularmente en la protección cardiovascular, la neuroprotección y las actividades antitumorales .

Mecanismo De Acción

La dihidrolicorina ejerce sus efectos a través de varios objetivos y vías moleculares:

Análisis Bioquímico

Biochemical Properties

Dihydrolycorine plays a significant role in biochemical reactions by interacting with various enzymes, proteins, and other biomolecules. It has been shown to inhibit methoxamine-induced contraction of isolated rabbit aortic rings and rat anococcygeus muscle . Additionally, dihydrolycorine interacts with fibrotic genes such as collagen I, TGF β, and p-smad3, as well as apoptosis-related genes like Bax and Bcl-2 . These interactions suggest that dihydrolycorine can modulate cellular processes related to fibrosis and apoptosis.

Cellular Effects

Dihydrolycorine exerts notable effects on various cell types and cellular processes. In cardiomyocytes, it has been observed to reduce fibrosis and apoptosis, thereby improving cardiac function following myocardial infarction . Dihydrolycorine influences cell signaling pathways by downregulating Runx1, a gene associated with adverse cardiac remodeling . This regulation leads to improved cardiac contractile function and reduced cardiomyocyte hypertrophy.

Molecular Mechanism

At the molecular level, dihydrolycorine exerts its effects through several mechanisms. It binds to Runx1, inhibiting its expression and activity . This inhibition results in the downregulation of fibrotic and apoptotic genes, thereby preventing adverse cardiac remodeling. Molecular docking and binding modeling studies have identified potential dihydrolycorine-binding sites in Runx1, further elucidating its mechanism of action .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of dihydrolycorine have been studied over various time periods. It has been shown to maintain stability and efficacy in reducing cardiac fibrosis and dysfunction over extended periods . Long-term studies indicate that dihydrolycorine can sustain its therapeutic effects, with minimal degradation observed in in vitro and in vivo models .

Dosage Effects in Animal Models

The effects of dihydrolycorine vary with different dosages in animal models. At a dose of 80 mg/kg, dihydrolycorine significantly reduces mean arterial pressure in normotensive rats . Higher doses have been associated with increased efficacy in reducing infarct size and cerebral edema in a rat model of focal cerebral ischemia-reperfusion injury . Toxic or adverse effects at high doses have not been extensively reported, suggesting a favorable safety profile.

Metabolic Pathways

Dihydrolycorine is involved in several metabolic pathways, interacting with enzymes and cofactors that modulate its activity. It is metabolized in the liver, where it undergoes biotransformation to produce active metabolites . These metabolites contribute to its overall pharmacological effects, influencing metabolic flux and metabolite levels in various tissues.

Transport and Distribution

Within cells and tissues, dihydrolycorine is transported and distributed through specific transporters and binding proteins. It is known to accumulate in cardiac tissues, where it exerts its therapeutic effects . The distribution of dihydrolycorine is influenced by factors such as blood flow, tissue binding, and membrane permeability .

Subcellular Localization

Dihydrolycorine localizes to specific subcellular compartments, where it interacts with target biomolecules. It has been observed to accumulate in the cytoplasm and nucleus of cardiomyocytes, where it modulates gene expression and cellular function . The subcellular localization of dihydrolycorine is directed by targeting signals and post-translational modifications that ensure its proper distribution within the cell .

Métodos De Preparación

La dihidrolicorina se sintetiza mediante la hidrogenación de la licorina. El proceso implica la reducción de la licorina utilizando gas hidrógeno en presencia de un catalizador, típicamente paladio sobre carbono (Pd/C). Esta reacción se lleva a cabo en condiciones controladas para asegurar la reducción selectiva de los dobles enlaces en la licorina, lo que resulta en la formación de this compound .

Análisis De Reacciones Químicas

La dihidrolicorina experimenta varias reacciones químicas, que incluyen:

    Oxidación: La this compound puede oxidarse para formar los óxidos correspondientes. Los agentes oxidantes comunes incluyen permanganato de potasio (KMnO₄) y peróxido de hidrógeno (H₂O₂).

    Reducción: Como se mencionó, la this compound se forma a través de la reducción de la licorina. Una mayor reducción puede conducir a la formación de derivados más saturados.

    Sustitución: La this compound puede sufrir reacciones de sustitución, particularmente en el átomo de nitrógeno. Los reactivos comunes para estas reacciones incluyen haluros de alquilo y cloruros de acilo.

Los principales productos formados a partir de estas reacciones dependen de las condiciones y reactivos específicos utilizados .

Propiedades

IUPAC Name

(1S,15R,17S,18S,19R)-5,7-dioxa-12-azapentacyclo[10.6.1.02,10.04,8.015,19]nonadeca-2,4(8),9-triene-17,18-diol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C16H19NO4/c18-11-3-8-1-2-17-6-9-4-12-13(21-7-20-12)5-10(9)14(15(8)17)16(11)19/h4-5,8,11,14-16,18-19H,1-3,6-7H2/t8-,11+,14+,15-,16-/m1/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

VJILFEGOWCJNIK-MGRBZGILSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1CN2CC3=CC4=C(C=C3C5C2C1CC(C5O)O)OCO4
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

C1CN2CC3=CC4=C(C=C3[C@H]5[C@H]2[C@H]1C[C@@H]([C@H]5O)O)OCO4
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C16H19NO4
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID701346488
Record name Dihydrolycorine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID701346488
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

289.33 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

6271-21-2
Record name Dihydrolycorine
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0006271212
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Dihydrolycorine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID701346488
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 6271-21-2
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/information-on-chemicals
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name DIHYDROLYCORINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/Z7N4S72301
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Dihydrolycorine
Reactant of Route 2
Dihydrolycorine
Reactant of Route 3
Dihydrolycorine
Reactant of Route 4
Dihydrolycorine
Reactant of Route 5
Dihydrolycorine
Reactant of Route 6
Dihydrolycorine

Descargo de responsabilidad e información sobre productos de investigación in vitro

Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.