Nifedipin
Übersicht
Beschreibung
Nifedipine is a dihydropyridine calcium channel blocker primarily used to manage angina pectoris, hypertension, Raynaud’s phenomenon, and premature labor . It was first developed by Bayer and described in the literature in 1972 . Nifedipine works by inhibiting the influx of calcium ions into cardiac muscle and smooth muscle cells, leading to vasodilation and reduced blood pressure .
Wirkmechanismus
Target of Action
Nifedipine is a first-generation dihydropyridine L-type calcium channel blocker . Its primary targets are the L-type voltage-gated calcium channels, which play a crucial role in muscle contraction and neurotransmitter release .
Mode of Action
Nifedipine inhibits the influx of calcium ions through L-type voltage-gated calcium channels . By blocking these channels, nifedipine prevents calcium-dependent processes, including muscle contraction and electrical conduction within the heart . This results in the relaxation of coronary vascular smooth muscle and coronary vasodilation, which increases myocardial oxygen delivery and reduces myocardial oxygen demand .
Biochemical Pathways
Nifedipine’s action on L-type calcium channels affects several biochemical pathways. It reduces peripheral vascular resistance, a key factor in hypertension, through peripheral arterial vasodilation . Additionally, nifedipine has been found to modulate the metabolism of chondrocytes and human bone marrow-derived mesenchymal stem cells .
Pharmacokinetics
Nifedipine exhibits a bioavailability of approximately 45-56% . It undergoes extensive hepatic metabolism via the CYP3A4 pathway . Approximately 60-80% of the dose is recovered in urine as inactive, water-soluble metabolites . The elimination half-life of nifedipine is around 2 hours .
Result of Action
The molecular and cellular effects of nifedipine’s action include a decrease in blood pressure and an increase in the supply of blood and oxygen to the heart . It also suppresses the production of nitric oxide and interleukin-1β in murine macrophages activated by lipopolysaccharide . Furthermore, nifedipine encourages macrophage polarization toward the M2 phenotype .
Action Environment
Environmental factors can influence the action, efficacy, and stability of nifedipine. For instance, nifedipine is very light-sensitive and can be photolytically degraded at visible wavelengths . This suggests that exposure to light could potentially affect the stability and efficacy of nifedipine. Furthermore, nifedipine is likely to be rapidly degraded in aquatic environments .
Wissenschaftliche Forschungsanwendungen
Nifedipin hat eine große Bandbreite an Anwendungen in der wissenschaftlichen Forschung:
5. Wirkmechanismus
This compound entfaltet seine Wirkung durch Blockierung der L-Typ-Kalziumkanäle in glatten Muskelzellen und Herzmuskelzellen . Diese Hemmung verhindert den Einstrom von Kalziumionen, was zur Entspannung der glatten Muskelzellen, Vasodilatation und einer darauf folgenden Senkung des Blutdrucks führt . Das primäre molekulare Ziel von this compound ist der L-Typ-Kalziumkanal .
Biochemische Analyse
Biochemical Properties
Nifedipine’s primary role in biochemical reactions is as an inhibitor of L-type calcium channels . By blocking these channels, Nifedipine prevents the influx of calcium ions into cells, which is a crucial step in muscle contraction and neurotransmitter release .
Cellular Effects
Nifedipine has a profound effect on various types of cells, particularly those in the heart and blood vessels . By inhibiting calcium influx, Nifedipine reduces the contractility of cardiac and smooth muscle cells, leading to a decrease in blood pressure . It also influences cell signaling pathways related to calcium homeostasis and can affect gene expression related to these pathways .
Molecular Mechanism
Nifedipine exerts its effects at the molecular level primarily through its interaction with L-type calcium channels . It binds to the alpha-1 subunit of these channels, causing a conformational change that prevents the passage of calcium ions . This inhibition can lead to downstream effects on gene expression and cellular metabolism .
Temporal Effects in Laboratory Settings
In laboratory settings, the effects of Nifedipine can be observed to change over time. It is almost completely absorbed in the gastrointestinal tract but has a bioavailability of 45-68%, partly due to first-pass metabolism . Over time, the drug is metabolized and excreted, and its effects diminish .
Dosage Effects in Animal Models
The effects of Nifedipine in animal models have been shown to vary with dosage . At lower doses, Nifedipine effectively reduces blood pressure without significant adverse effects. At higher doses, it can cause hypotension and reflex tachycardia .
Metabolic Pathways
Nifedipine is metabolized primarily in the liver by the cytochrome P450 system . It undergoes extensive first-pass metabolism, leading to the formation of several metabolites .
Transport and Distribution
After absorption, Nifedipine is distributed throughout the body. It is highly lipophilic, allowing it to cross cell membranes easily . It is also highly protein-bound in plasma, which can affect its distribution .
Subcellular Localization
As a lipophilic compound, Nifedipine can diffuse across cell membranes and reach various subcellular compartments . Its primary site of action, the L-type calcium channels, are located in the cell membrane . It can also affect intracellular calcium stores and other subcellular structures .
Vorbereitungsmethoden
Synthesewege und Reaktionsbedingungen: Nifedipin kann durch die Hantzsch-Reaktion synthetisiert werden, bei der ein Aldehyd, ein β-Ketoester und Ammoniak kondensiert werden . Zum Beispiel werden Methylacetoacetat und o-Nitrobenzaldehyd in Gegenwart von Ammoniak zu this compound umgesetzt .
Industrielle Produktionsverfahren: In industriellen Umgebungen wird this compound häufig als feste Dispersion unter Verwendung wasserlöslicher Polymere wie Polyvinylpyrrolidon hergestellt, um seine Bioverfügbarkeit zu verbessern . Eine andere Methode beinhaltet die Herstellung von this compound-beladenen polymeren Nanopartikeln unter Verwendung von Techniken wie Nanopräzipitation und Emulsions-Lösungsmitteleindampfung .
Analyse Chemischer Reaktionen
Reaktionstypen: Nifedipin unterliegt verschiedenen chemischen Reaktionen, darunter Reduktion, Oxidation und Substitution. Zum Beispiel kann es unter Verwendung eines Systems aus Zink und Salzsäure reduziert werden .
Häufige Reagenzien und Bedingungen:
Hauptprodukte:
Vergleich Mit ähnlichen Verbindungen
Nifedipin wird häufig mit anderen Kalziumkanalblockern wie Amlodipin, Nicardipin und Felodipin verglichen . Obwohl alle diese Verbindungen einen ähnlichen Wirkmechanismus teilen, ist this compound aufgrund seines schnellen Wirkungseintritts und seiner kürzeren Halbwertszeit einzigartig . Dadurch ist es besonders nützlich für die Behandlung akuter hypertensiver Notfälle .
Ähnliche Verbindungen:
- Amlodipin
- Nicardipin
- Felodipin
- Isradipin
- Nimodipin
- Nitrendipin
- Lacidipin
Das einzigartige pharmakokinetische Profil von this compound und seine Wirksamkeit bei der Behandlung einer Vielzahl von Herz-Kreislauf-Erkrankungen unterstreichen seine Bedeutung in der medizinischen Therapie.
Eigenschaften
IUPAC Name |
dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C17H18N2O6/c1-9-13(16(20)24-3)15(14(10(2)18-9)17(21)25-4)11-7-5-6-8-12(11)19(22)23/h5-8,15,18H,1-4H3 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
HYIMSNHJOBLJNT-UHFFFAOYSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CC1=C(C(C(=C(N1)C)C(=O)OC)C2=CC=CC=C2[N+](=O)[O-])C(=O)OC | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C17H18N2O6 | |
Record name | NIFEDIPINE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20738 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | nifedipine | |
Source | Wikipedia | |
URL | https://en.wikipedia.org/wiki/Nifedipine | |
Description | Chemical information link to Wikipedia. | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Related CAS |
60299-11-8 (mono-hydrochloride) | |
Record name | Nifedipine [USAN:USP:INN:BAN:JAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0021829254 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
DSSTOX Substance ID |
DTXSID2025715 | |
Record name | Nifedipine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID2025715 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
346.3 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Nifedipine appears as odorless yellow crystals or powder. Tasteless. (NTP, 1992), Solid | |
Record name | NIFEDIPINE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20738 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Nifedipine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0015247 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Solubility |
less than 1 mg/mL at 67.1 °F (NTP, 1992), Insoluble, Solubility at 20 °C (g/L): acetone 250, methylene chloride 160, chloroform 140, ethyl acetate 50, methanol 26, ethanol 17, In water, 1.7X10-5 mol/L = 5.9 mg/L at 25 °C, 1.77e-02 g/L | |
Record name | NIFEDIPINE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20738 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Nifedipine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB01115 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Nifedipine | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Nifedipine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0015247 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Vapor Pressure |
2.6X10-8 mm Hg at 25 °C | |
Record name | Nifedipine | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Mechanism of Action |
Nifedipine blocks voltage gated L-type calcium channels in vascular smooth muscle and myocardial cells. This blockage prevents the entry of calcium ions into cells during depolarization, reducing peripheral arterial vascular resistance and dilating coronary arteries. These actions reduce blood pressure and increase the supply of oxygen to the heart, alleviating angina., The principal physiologic action of nifedipine is to inhibit the transmembrane influx of extracellular calcium ions across the membranes of myocardial cells and vascular smooth muscle cells, without changing serum calcium concentrations. Calcium plays important roles in the excitation-contraction coupling processes of the heart and vascular smooth muscle cells and in the electrical discharge of the specialized conduction cells of the heart. The membranes of these cells contain numerous channels that carry a slow inward current and that are selective for calcium. Activation of these slow calcium channels contributes to the plateau phase (phase 2) of the action potential of cardiac and vascular smooth muscle cells. The exact mechanism whereby nifedipine inhibits calcium ion influx across the slow calcium channels is not known, but the drug is thought to inhibit ion-control gating mechanisms of the channel, deform the slow channel, and/or interfere with release of calcium from the sarcoplasmic reticulum. By inhibiting calcium influx, nifedipine inhibits the contractile processes of cardiac and vascular smooth muscle, thereby dilating the main coronary and systemic arteries., Nifedipine is a peripheral arterial vasodilator which acts directly on vascular smooth muscle. The binding of nifedipine to voltage-dependent and possibly receptor-operated channels in vascular smooth muscle results in an inhibition of calcium influx through these channels. Stores of intracellular calcium in vascular smooth muscle are limited and thus dependent upon the influx of extracellular calcium for contraction to occur. The reduction in calcium influx by nifedipine causes arterial vasodilation and decreased peripheral vascular resistance which results in reduced arterial blood pressure. | |
Record name | Nifedipine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB01115 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Nifedipine | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Impurities |
Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate, Dimethyl 2,6-dimethyl-4-(2_nitrosophenyl)pyridine-3,5-dicarboxylate, Methyl 2-(2-nitrobenzylidene)-3-oxobutanoate, Methyl 3-aminobut-2-enoate | |
Record name | Nifedipine | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Color/Form |
Yellow crystals | |
CAS No. |
21829-25-4, 193689-82-6, 915092-63-6 | |
Record name | NIFEDIPINE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20738 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | 3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester, radical ion(1-) | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=193689-82-6 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Nifedipine | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=21829-25-4 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | 3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, 3,5-dimethyl ester, radical ion(1+) | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=915092-63-6 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Nifedipine [USAN:USP:INN:BAN:JAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0021829254 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Nifedipine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB01115 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | nifedipine | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757242 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | Nifedipine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID2025715 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | Nifedipine | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.040.529 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | NIFEDIPINE | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/I9ZF7L6G2L | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Record name | Nifedipine | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Nifedipine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0015247 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
342 to 345 °F (NTP, 1992), 172-174 °C, 172 - 174 °C | |
Record name | NIFEDIPINE | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/20738 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Nifedipine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB01115 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Nifedipine | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Nifedipine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0015247 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Synthesis routes and methods I
Procedure details
Synthesis routes and methods II
Procedure details
Synthesis routes and methods III
Procedure details
Synthesis routes and methods IV
Procedure details
Synthesis routes and methods V
Procedure details
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten
Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.