molecular formula C17H18N2O6 B1678770 Nifédipine CAS No. 21829-25-4

Nifédipine

Numéro de catalogue: B1678770
Numéro CAS: 21829-25-4
Poids moléculaire: 346.3 g/mol
Clé InChI: HYIMSNHJOBLJNT-UHFFFAOYSA-N
Attention: Uniquement pour un usage de recherche. Non destiné à un usage humain ou vétérinaire.
En stock
  • Cliquez sur DEMANDE RAPIDE pour recevoir un devis de notre équipe d'experts.
  • Avec des produits de qualité à un prix COMPÉTITIF, vous pouvez vous concentrer davantage sur votre recherche.

Analyse Biochimique

Biochemical Properties

Nifedipine’s primary role in biochemical reactions is as an inhibitor of L-type calcium channels . By blocking these channels, Nifedipine prevents the influx of calcium ions into cells, which is a crucial step in muscle contraction and neurotransmitter release .

Cellular Effects

Nifedipine has a profound effect on various types of cells, particularly those in the heart and blood vessels . By inhibiting calcium influx, Nifedipine reduces the contractility of cardiac and smooth muscle cells, leading to a decrease in blood pressure . It also influences cell signaling pathways related to calcium homeostasis and can affect gene expression related to these pathways .

Molecular Mechanism

Nifedipine exerts its effects at the molecular level primarily through its interaction with L-type calcium channels . It binds to the alpha-1 subunit of these channels, causing a conformational change that prevents the passage of calcium ions . This inhibition can lead to downstream effects on gene expression and cellular metabolism .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of Nifedipine can be observed to change over time. It is almost completely absorbed in the gastrointestinal tract but has a bioavailability of 45-68%, partly due to first-pass metabolism . Over time, the drug is metabolized and excreted, and its effects diminish .

Dosage Effects in Animal Models

The effects of Nifedipine in animal models have been shown to vary with dosage . At lower doses, Nifedipine effectively reduces blood pressure without significant adverse effects. At higher doses, it can cause hypotension and reflex tachycardia .

Metabolic Pathways

Nifedipine is metabolized primarily in the liver by the cytochrome P450 system . It undergoes extensive first-pass metabolism, leading to the formation of several metabolites .

Transport and Distribution

After absorption, Nifedipine is distributed throughout the body. It is highly lipophilic, allowing it to cross cell membranes easily . It is also highly protein-bound in plasma, which can affect its distribution .

Subcellular Localization

As a lipophilic compound, Nifedipine can diffuse across cell membranes and reach various subcellular compartments . Its primary site of action, the L-type calcium channels, are located in the cell membrane . It can also affect intracellular calcium stores and other subcellular structures .

Analyse Des Réactions Chimiques

Comparaison Avec Des Composés Similaires

La nifédipine est souvent comparée à d’autres bloqueurs des canaux calciques tels que l’amlodipine, la nicardipine et la felodipine . Bien que tous ces composés partagent un mécanisme d’action similaire, la this compound est unique en raison de son début d’action rapide et de sa demi-vie plus courte . Cela la rend particulièrement utile pour la gestion des urgences hypertensives aiguës .

Composés similaires :

  • Amlodipine
  • Nicardipine
  • Felodipine
  • Isradipine
  • Nimodipine
  • Nitrendipine
  • Lacidipine

Le profil pharmacocinétique distinct de la this compound et son efficacité dans le traitement d’une variété d’affections cardiovasculaires mettent en évidence son importance en thérapie médicale.

Propriétés

IUPAC Name

dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C17H18N2O6/c1-9-13(16(20)24-3)15(14(10(2)18-9)17(21)25-4)11-7-5-6-8-12(11)19(22)23/h5-8,15,18H,1-4H3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

HYIMSNHJOBLJNT-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC1=C(C(C(=C(N1)C)C(=O)OC)C2=CC=CC=C2[N+](=O)[O-])C(=O)OC
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C17H18N2O6
Record name NIFEDIPINE
Source CAMEO Chemicals
URL https://cameochemicals.noaa.gov/chemical/20738
Description CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management.
Explanation CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data.
Record name nifedipine
Source Wikipedia
URL https://en.wikipedia.org/wiki/Nifedipine
Description Chemical information link to Wikipedia.
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Related CAS

60299-11-8 (mono-hydrochloride)
Record name Nifedipine [USAN:USP:INN:BAN:JAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0021829254
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.

DSSTOX Substance ID

DTXSID2025715
Record name Nifedipine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID2025715
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

346.3 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Nifedipine appears as odorless yellow crystals or powder. Tasteless. (NTP, 1992), Solid
Record name NIFEDIPINE
Source CAMEO Chemicals
URL https://cameochemicals.noaa.gov/chemical/20738
Description CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management.
Explanation CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data.
Record name Nifedipine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0015247
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

less than 1 mg/mL at 67.1 °F (NTP, 1992), Insoluble, Solubility at 20 °C (g/L): acetone 250, methylene chloride 160, chloroform 140, ethyl acetate 50, methanol 26, ethanol 17, In water, 1.7X10-5 mol/L = 5.9 mg/L at 25 °C, 1.77e-02 g/L
Record name NIFEDIPINE
Source CAMEO Chemicals
URL https://cameochemicals.noaa.gov/chemical/20738
Description CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management.
Explanation CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data.
Record name Nifedipine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB01115
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Nifedipine
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Nifedipine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0015247
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Vapor Pressure

2.6X10-8 mm Hg at 25 °C
Record name Nifedipine
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Mechanism of Action

Nifedipine blocks voltage gated L-type calcium channels in vascular smooth muscle and myocardial cells. This blockage prevents the entry of calcium ions into cells during depolarization, reducing peripheral arterial vascular resistance and dilating coronary arteries. These actions reduce blood pressure and increase the supply of oxygen to the heart, alleviating angina., The principal physiologic action of nifedipine is to inhibit the transmembrane influx of extracellular calcium ions across the membranes of myocardial cells and vascular smooth muscle cells, without changing serum calcium concentrations. Calcium plays important roles in the excitation-contraction coupling processes of the heart and vascular smooth muscle cells and in the electrical discharge of the specialized conduction cells of the heart. The membranes of these cells contain numerous channels that carry a slow inward current and that are selective for calcium. Activation of these slow calcium channels contributes to the plateau phase (phase 2) of the action potential of cardiac and vascular smooth muscle cells. The exact mechanism whereby nifedipine inhibits calcium ion influx across the slow calcium channels is not known, but the drug is thought to inhibit ion-control gating mechanisms of the channel, deform the slow channel, and/or interfere with release of calcium from the sarcoplasmic reticulum. By inhibiting calcium influx, nifedipine inhibits the contractile processes of cardiac and vascular smooth muscle, thereby dilating the main coronary and systemic arteries., Nifedipine is a peripheral arterial vasodilator which acts directly on vascular smooth muscle. The binding of nifedipine to voltage-dependent and possibly receptor-operated channels in vascular smooth muscle results in an inhibition of calcium influx through these channels. Stores of intracellular calcium in vascular smooth muscle are limited and thus dependent upon the influx of extracellular calcium for contraction to occur. The reduction in calcium influx by nifedipine causes arterial vasodilation and decreased peripheral vascular resistance which results in reduced arterial blood pressure.
Record name Nifedipine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB01115
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Nifedipine
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Impurities

Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate, Dimethyl 2,6-dimethyl-4-(2_nitrosophenyl)pyridine-3,5-dicarboxylate, Methyl 2-(2-nitrobenzylidene)-3-oxobutanoate, Methyl 3-aminobut-2-enoate
Record name Nifedipine
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

Yellow crystals

CAS No.

21829-25-4, 193689-82-6, 915092-63-6
Record name NIFEDIPINE
Source CAMEO Chemicals
URL https://cameochemicals.noaa.gov/chemical/20738
Description CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management.
Explanation CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data.
Record name 3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester, radical ion(1-)
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=193689-82-6
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Nifedipine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=21829-25-4
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name 3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, 3,5-dimethyl ester, radical ion(1+)
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=915092-63-6
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Nifedipine [USAN:USP:INN:BAN:JAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0021829254
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Nifedipine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB01115
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name nifedipine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757242
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Nifedipine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID2025715
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Nifedipine
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.040.529
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name NIFEDIPINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/I9ZF7L6G2L
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Nifedipine
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Nifedipine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0015247
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

342 to 345 °F (NTP, 1992), 172-174 °C, 172 - 174 °C
Record name NIFEDIPINE
Source CAMEO Chemicals
URL https://cameochemicals.noaa.gov/chemical/20738
Description CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management.
Explanation CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data.
Record name Nifedipine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB01115
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Nifedipine
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7775
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Nifedipine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0015247
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

2-Nitrobenzaldehyde-diacetate (0.1 mole, 25.4 g), methyl acetoacetate (0.2 mole, 23.2 g) and NH4OH (12 ml) were heated in methanol (20 ml) in the presence of pyridine for several (7) hours. After cooling to 15° C. the precipitated product was filtered off. The crude product was crystallized from acetic acid to yield 4-(2'-nitrophenyl)-2,6-dimethyl-3,5-dicarbmethoxy-1,4-dihydropyridine (21.7 g, 62% of the theory), m.p. 172°-174° C.
Name
2-Nitrobenzaldehyde diacetate
Quantity
25.4 g
Type
reactant
Reaction Step One
Quantity
23.2 g
Type
reactant
Reaction Step One
Name
Quantity
12 mL
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
[Compound]
Name
( 7 )
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
20 mL
Type
reactant
Reaction Step One

Synthesis routes and methods II

Procedure details

2-Nitrobenzaldehyde-diacetate (0.1 mole, 25.4 g), methyl acetoacetate (0.21 mole, 26 g), NH4OH (12 ml) and methanol (45 ml) were heated under reflux for 5 hours. After cooling to 15° C. the precipitated product was filtered off. The crystallization of the crude product from acetic acid yielded 4-(2'-nitrophenyl)-2,6 dimethyl-3,5-dicarbmethoxy-1,4-dihydropyridine (19.0 g, 55% of the theory), m.p. 173°-174° C.
Name
2-Nitrobenzaldehyde diacetate
Quantity
25.4 g
Type
reactant
Reaction Step One
Quantity
26 g
Type
reactant
Reaction Step One
Name
Quantity
12 mL
Type
reactant
Reaction Step One

Synthesis routes and methods III

Procedure details

One proceeds as described in Example 7 except that 0.4 mole of 2-nitro-benzaldehyde, 0.415 mole of a 25% aqueous ammonium hydroxide solution and 1.40 moles of methyl acetoacetate are used. Thus 112.1 g of nifedipine are obtained, yield 81%, m.p.: 172°-175° C. The product complies with the requirements of USP XXI without further purification.
Quantity
0.4 mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
1.4 mol
Type
reactant
Reaction Step Three
Yield
81%

Synthesis routes and methods IV

Procedure details

Into a 1-liter glass reactor 60.4 g (0.4 mole) of 2-nitro-benzaldehyde, 102.1 g (0.88 mole) of methyl acetoacetate, 28.25 g (0.415 mole) of a 25% aqueous ammonium hydroxide solution and 150 ml of methanol are weighed in. The reactor is closed, whereupon the reaction mixture is heated to boiling at a temperature of 101°-103° C. and a pressure of 2.0-2.2 bar for 5 hours. The reaction mixture is cooled to 0°-5° C., the precipitated product is filtered and washed with methanol. Thus 110.5 g of nifedipine are obtained, yield 79.8%, m.p.: 171.5°-175° C.
Quantity
60.4 g
Type
reactant
Reaction Step One
Quantity
102.1 g
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
150 mL
Type
solvent
Reaction Step One
Yield
79.8%

Synthesis routes and methods V

Procedure details

Nifedipine-isothiocyanate was also coupled to casein, ovalbumin and keyhole limpet hemocyanin using the procedures described above. An alternate procedure for the coupling of nifedipine-isothiocyanate to various proteins (i.e., bovine serum albumin, ovalbumin, casein and keyhole limpet hemocyanin) was to dissolve the protein (20 mg) in 2 ml of 100 mM sodium bicarbonate (pH 9.0) and then incubate with 0.8 mg of nifedipine-isothiocyanate (dissolved in ethanol to make the final concentration of ethanol in the incubation medium 38 percent) for 24 hours at 37° C. with shaking in the dark. This alternate procedure is useful for producing nifedipine conjugates at high protein concentrations.
Name
Nifedipine isothiocyanate
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
nifedipine isothiocyanate
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Name
nifedipine isothiocyanate
Quantity
0.8 mg
Type
reactant
Reaction Step Three
Quantity
2 mL
Type
solvent
Reaction Step Four
Quantity
0 (± 1) mol
Type
solvent
Reaction Step Five
Quantity
0 (± 1) mol
Type
solvent
Reaction Step Six

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Reactant of Route 1
Nifedipine
Reactant of Route 2
Reactant of Route 2
Reactant of Route 2
Nifedipine
Reactant of Route 3
Reactant of Route 3
Reactant of Route 3
Nifedipine
Reactant of Route 4
Reactant of Route 4
Reactant of Route 4
Nifedipine
Reactant of Route 5
Reactant of Route 5
Reactant of Route 5
Nifedipine
Reactant of Route 6
Reactant of Route 6
Nifedipine

Avertissement et informations sur les produits de recherche in vitro

Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.