molecular formula C15H14N4O B1678648 Nevirapina CAS No. 129618-40-2

Nevirapina

Número de catálogo: B1678648
Número CAS: 129618-40-2
Peso molecular: 266.30 g/mol
Clave InChI: NQDJXKOVJZTUJA-UHFFFAOYSA-N
Atención: Solo para uso de investigación. No para uso humano o veterinario.
En Stock
  • Haga clic en CONSULTA RÁPIDA para recibir una cotización de nuestro equipo de expertos.
  • Con productos de calidad a un precio COMPETITIVO, puede centrarse más en su investigación.

Descripción

Nevirapina es un inhibidor no nucleósido de la transcriptasa inversa que se utiliza principalmente en el tratamiento y la prevención de la infección por el virus de la inmunodeficiencia humana tipo 1 (VIH-1). A menudo se utiliza en combinación con otros medicamentos antirretrovirales para mejorar su eficacia. This compound funciona inhibiendo la enzima transcriptasa inversa, que es crucial para la replicación del VIH-1 .

Mecanismo De Acción

Nevirapina ejerce sus efectos uniéndose directamente a la enzima transcriptasa inversa del VIH-1. Esta unión provoca una interrupción en el sitio catalítico de la enzima, bloqueando así las actividades de la ADN polimerasa dependiente de ARN y del ADN dependiente de ADN. Esta inhibición impide la replicación del VIH-1, reduciendo la carga viral en el cuerpo del paciente .

Compuestos similares:

Singularidad de this compound: this compound es única por su capacidad de prevenir la transmisión maternoinfantil del VIH durante el parto, una característica que no suele estar asociada a otros inhibidores no nucleósidos de la transcriptasa inversa. Además, su larga vida media permite una dosificación menos frecuente, lo que puede mejorar la adherencia del paciente al régimen de tratamiento .

Aplicaciones Científicas De Investigación

Nevirapine has a wide range of scientific research applications, including:

Métodos De Preparación

Rutas de síntesis y condiciones de reacción: Nevirapina se puede sintetizar mediante diversos métodos, incluida la condensación de 2-cloro-3-cianopiridina con ciclopropilamina, seguida de ciclación y metilación. Las condiciones de reacción normalmente implican el uso de disolventes como la dimetilformamida y catalizadores como el carbonato de potasio .

Métodos de producción industrial: La producción industrial de this compound a menudo implica una síntesis a gran escala utilizando rutas químicas similares, pero optimizadas para obtener mayores rendimientos y pureza. Las técnicas como la homogeneización a alta presión y la preparación de nanosuspensiones se emplean para mejorar la solubilidad y la biodisponibilidad del compuesto .

Análisis De Reacciones Químicas

Tipos de reacciones: Nevirapina experimenta varios tipos de reacciones químicas, entre ellas:

Reactivos y condiciones comunes:

Productos principales: Los principales productos formados a partir de estas reacciones incluyen varios metabolitos y derivados de this compound, que pueden tener diferentes propiedades farmacológicas .

4. Aplicaciones de la investigación científica

This compound tiene una amplia gama de aplicaciones en la investigación científica, entre ellas:

Comparación Con Compuestos Similares

Uniqueness of Nevirapine: Nevirapine is unique due to its ability to prevent mother-to-child transmission of HIV during childbirth, a feature not commonly associated with other non-nucleoside reverse transcriptase inhibitors. Additionally, its long half-life allows for less frequent dosing, which can improve patient adherence to the treatment regimen .

Propiedades

IUPAC Name

2-cyclopropyl-7-methyl-2,4,9,15-tetrazatricyclo[9.4.0.03,8]pentadeca-1(11),3,5,7,12,14-hexaen-10-one
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C15H14N4O/c1-9-6-8-17-14-12(9)18-15(20)11-3-2-7-16-13(11)19(14)10-4-5-10/h2-3,6-8,10H,4-5H2,1H3,(H,18,20)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

NQDJXKOVJZTUJA-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC1=C2C(=NC=C1)N(C3=C(C=CC=N3)C(=O)N2)C4CC4
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C15H14N4O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID7031797
Record name Nevirapine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7031797
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

266.30 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Nevirapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014383
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

>39.9 [ug/mL] (The mean of the results at pH 7.4), In water, 100 mg/l @ neutral pH, 1.05e-01 g/L
Record name SID865943
Source Burnham Center for Chemical Genomics
URL https://pubchem.ncbi.nlm.nih.gov/bioassay/1996#section=Data-Table
Description Aqueous solubility in buffer at pH 7.4
Record name Nevirapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00238
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name NEVIRAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7164
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Nevirapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014383
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Vapor Pressure

3.4X10-9 mm Hg @ 25 °C /Estimated/
Record name NEVIRAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7164
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Mechanism of Action

Nevirapine binds directly to reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by causing a disruption of the enzyme's catalytic site. The activity of nevirapine does not compete with template or nucleoside triphosphates., The binding site for nevirapine on HIV-1 reverse transcriptase is near, but not at the proposed site of active polymerization, in a deep pocket lying between the beta sheets of the palm and at the base of the thumb subdomains of the enzyme's p66 subunit. In the absence of nevirapine, the binding of deoxynucleoside triphosphate to the reverse transcriptase-template complex results in a change in the conformation of reverse transcriptase. This conformational change is followed by a magnesium-dependent chemical reaction in which deoxynucleoside triphosphate is incorporated into the newly forming viral DNA; the conformational change appears to be the rate-limiting step of the reverse transcriptase catalysis of viral DNA formation. Nevirapine appears to have no appreciable effect on the rate of or equilibrium constant for the conformational change but may slow the chemical reaction, which then becomes the rate-limiting step in the catalytic sequence. When nevirapine binds to the reverse transcriptase-template complex, changes may occur in the position of aspartic acid carboxyl groups in reverse transcriptase so that magnesium ions are not in proper alignment for the chemical reaction to occur efficiently, and the reaction is slowed. Therefore, although the nevirapine-reverse transcriptase-template complex may continue to bind deoxynucleoside triphosphate and to catalyze its incorporation into the newly forming viral DNA, it appears to do so at a slower rate., The mechanism of action of nevirapine differs from that of nucleoside reverse transcriptase inhibitors (e.g., abacavir, didanosine, lamivudine, stavudine, zalcitabine, zidovudine). Nucleoside antiretroviral agents require intracellular conversion to triphosphate metabolites, which then compete with naturally occurring deoxynucleoside triphosphates for incorporation into viral DNA by reverse transcriptase and cause premature viral DNA chain termination by preventing further 5 to 3 phosphodiester linkages. Nevirapine, however, is noncompetitive with respect to primer-template or nucleoside triphosphate binding and is specific for HIV-1 reverse transcriptase. The drug binds directly to heterodimeric HIV-1 reverse transcriptase and appears to inhibit viral RNA- and DNA-dependent DNA polymerase activities by disrupting the catalytic site of the enzyme., Nevirapine diffuses into the cell and binds to reverse transcriptase adjacent to the catalytic site. This induces conformational changes that inactivate the enzyme. Resistance develops rapidly in cells exposed to nevirapine. High-level resistance is associated with mutations at reverse transcriptase codons 101, 103, 106,108, 135, 181, 188, and 190. A single mutation at either codon 103 or 181 decreases susceptibility more than 100 fold. Cross-resistance may extend to all FDA-approved nonnucleoside reverse transcriptase inhibitors, especially with the codon 103 mutation., Nevirapine is a highly specific inhibitor of HIV-1 reverse transcriptase, and results of in vitro studies indicate that nevirapine does not appear to inhibit cellular DNA polymerases, including human alpha-, beta-, Gamma-, or Delta-polymerases.
Record name Nevirapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00238
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name NEVIRAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7164
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

Crystals from pyridine and water

CAS No.

129618-40-2
Record name Nevirapine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=129618-40-2
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Nevirapine [USAN:USP:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0129618402
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Nevirapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00238
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name nevirapine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759902
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name nevirapine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=641530
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Nevirapine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7031797
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name NEVIRAPINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/99DK7FVK1H
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name NEVIRAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7164
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Nevirapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014383
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

247-249 °C, 196.06 °C
Record name Nevirapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00238
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name NEVIRAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7164
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Nevirapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014383
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

The process according to claim 3, wherein 2-chloro-N-(2-chloro-4-methyl-3-pyridyl)-3-pyridine carboxamide is heated with cyclopropylamine in the presence of 0.5 to 2 mol of calcium oxide in an inert solvent to a temperature of 130° to 150° C. over a period of 5 to 8 hours, the reaction mixture is then cooled to a temperature below 40° C. and filtered, the filter cake is washed with an inert solvent and the combined filtrates are concentrated, the residue is then diluted with an inert solvent and this solution is added to a solution or suspension of a base in an inert solvent, heated at 120° to 150° C., the reaction mixture is then kept at a temperature of 120° to 150° C. for 30 to 90 minutes, the reaction medium is then distilled off as much as possible and the residue is hydrolysed at a temperature of 20° to 90° C., the hydrolysed residue is cooled down and mixed with an inert solvent and an organic acid and the mixture is stirred at a temperature of 5° to 50° C. for 30 to 90 minutes, the product is then present as a suspension which is isolated and washed with an inert solvent, followed by water and an alcohol to give nevirapine.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
1.25 (± 0.75) mol
Type
reactant
Reaction Step Two

Synthesis routes and methods II

Procedure details

117.5 kg of 2-chloro-N-(2-chloro-4-methyl-3-pyridyl)-3-pyridine carboxamide (4), 46.7 kg of calcium oxide and 47.5 kg of cyclopropylamine (molar ratio: 1:2:2) are heated to 135° to 145° C. in 235 l of diglyme (diethylene glycol dimethylether) in a 500 l VA autoclave over a period of 6 to 8 hours. The reaction mixture is then cooled to a temperature of 20° to 30° C. and filtered. The filter cake is washed with 58.8 l of diglyme. The filtrates are combined and about 188 l of solvent is distilled off. The residue is then diluted with a further 117.5 l of diglyme. Over a period of 20 to 40 minutes, the resultant diluted solution is added to a suspension of 45.0 kg of 60% sodium hydride in 352.5 l of diglyme, heated to 130° C. The storage vessel and conduits are rinsed with a further 55.8 l of diglyme and the mixture is stirred at a temperature of 130° to 140° C. for a further 30 to 60 minutes. The majority of the diglyme is then distilled off. Finally, the remaining residue is carefully mixed with 470.0 l of water. The reaction mixture is cooled to a temperature of about 25° C. and 235.0 l of cyclohexane and 57.1 l of glacial acetic acid are added. The mixture is then stirred for about 1 hour at a temperature of 10° to 25° C. The resultant suspension is centrifuged and the centrifuged material is washed with 235.0 l of methyl tert.-butylether, followed by 353.5 l of water and finally with 235 l of ethanol. In this way, after drying, 90.6 kg (81.7% of theory) of 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido-[3,2-b:2',3'-e][1,4]diazepin-6-one (nevirapine) is isolated.
Quantity
117.5 kg
Type
reactant
Reaction Step One
Quantity
46.7 kg
Type
reactant
Reaction Step One
Quantity
47.5 kg
Type
reactant
Reaction Step One
Quantity
235 L
Type
solvent
Reaction Step One

Synthesis routes and methods III

Procedure details

117.5 kg of 2-chloro-N-(2-chloro-4-methyl-3-pyridyl)-3-pyridine carboxamide (4), 23.3 kg of calcium oxide and 59.4 kg of cyclopropylamine (molar ratio: 1:1:2.5) are heated to between 135° and 145° C. in 235 l ofdiglyme (diethylene glycoldimethylether) in a 500 l VA autoclave over a period of 6 to 8 hours. The reaction mixture is then cooled to a temperature of 20° to 30° C. and filtered. The filter cake is washed with 58.8 l of diglyme. The filtrates are combined and initially 200 l of solvent is distilled off. The residue is then diluted with a further 117.5 l of diglyme. The resultant diluted solution is added over a period of 20 to 40 minutes to a suspension of 45.0 kg of 60% sodium hydride in 352.5 l of diglyme, heated to 130° C. The storage vessel and conduits are rinsed with a further 55.8 l of diglyme, and the mixture is stirred at a temperature of between 130° and 140° C. for a further 30 to 60 minutes. The majority of the diglyme is then distilled off. Finally, the remaining residue is carefully mixed with 470 l of water. After cooling to a temperature of about 25° C., 235.0 l of cyclohexane and 57.11 of glacial acetic acid are added to the reaction mixture. The mixture is then stirred for about 1 hour at temperature of 10° to 25° C. The resultant suspension is centrifuged and the centrifuged material is then washed with 235.0 l of methyl-tert.-butylether and subsequently with 353.5 l of water and finally with 235 l of ethanol. In this way, after drying, 92.5 kg (83.5% of theory) of 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (nevirapine) is isolated.
Quantity
117.5 kg
Type
reactant
Reaction Step One
Quantity
23.3 kg
Type
reactant
Reaction Step One
Quantity
59.4 kg
Type
reactant
Reaction Step One
[Compound]
Name
diethylene
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One

Synthesis routes and methods IV

Procedure details

The process according to claim 4, wherein 2-chloro-N-(2-chloro-4-methyl-3-pyridyl)-3-pyridine carboxamide is heated with cyclopropylamine in the presence of 1 to 2 mol of calcium oxide in diglyme to 135° to 145° C. for 6 to 7 hours, the reaction mixture is then cooled down to 20° to 30° C. and filtered, the filter cake is washed with diglyme and the combined filtrates are concentrated, the residue is then diluted with diglyme and this solution is added to a solution or suspension of sodium hydride in diglyme, heated to 130° to 140° C., and the reaction mixture is kept at a temperature of 130° to 140° C. for 30 minutes to one hour and then the reaction medium is distilled off, the residue is hydrolysed at a temperature of 50° to 80° C. and then cooled to a temperature of about 25° C. and mixed with an inert solvent and an organic acid and the reaction mixture is stirred for about 1 hour at 10° to 25° C., the resultant suspension of the product is separated, washed with an inert solvent, followed by water and alcohol to give nevirapine.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
1.5 (± 0.5) mol
Type
reactant
Reaction Step Two
Quantity
0 (± 1) mol
Type
solvent
Reaction Step Two

Synthesis routes and methods V

Procedure details

287.2 kg of 2-chloro-N-(2-chloro-4-methyl-3-pyridyl)-3-pyridine carboxamide (4), 57.0 kg of calcium oxide and 87.1 kg of cyclopropylamine (molar ratio: 1:1:1.5) are heated in 574 l of diglyme (diethylene glycol-dimethylether) to 135°-145° C. for about 30 minutes in a 1200 l VA stirring apparatus. This produces a pressure of 1.2-1.5 bar and about 50% of the starting material (4) is reacted. To this mixture, over about 30 minutes at 135°-145° C., a further 58.1 kg of cyclopropylamine is added producing a pressure of 3.0-3.5 bar, and another 25% of the starting material (4) is reacted. The mixture is then kept at 135°-145 ° C. for a period of 5 to 6 hours. The reaction mixture is then cooled to a temperature of 20° to 30° C. and filtered. The filter cake is washed with 144 l of diglyme. The filtrates are combined and 400 l of solvent is distilled off. The residue is then diluted with a further 287 l of diglyme. Over 20-40 minutes, the resultant diluted solution is added to a suspension of 110 kg of 60% sodium hydride in 862 l of diglyme, heated to 130° C. The storage vessel and conduits are rinsed with a further 144 l of diglyme and the mixture is stirred at a temperature of 130° to 140° C. for another 30 to 60 minutes. The majority of the diglyme is then distilled off. Finally, the remaining residue is carefully mixed with 1150 l of water. After the reaction mixture has been cooled to a temperature of about 25° C., 575 l of cyclohexane and 147 l of glacial acetic acid are added. The mixture is then stirred for about 1 hour at a temperature of 10°-25° C. The resultant suspension is centrifuged and the centrifuged material is then washed with 575 l of methyl-tert.-butylether, followed by 862 l of water and finally with 575 l of ethanol. In this way, after drying, 225 kg (83.0% of theory) of 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b :2',3'-e][1,4 ]diazepin-6-one (nevirapine) is obtained.
Quantity
58.1 kg
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Nevirapine
Reactant of Route 2
Nevirapine
Reactant of Route 3
Nevirapine
Reactant of Route 4
Reactant of Route 4
Reactant of Route 4
Nevirapine
Reactant of Route 5
Nevirapine
Reactant of Route 6
Nevirapine

Descargo de responsabilidad e información sobre productos de investigación in vitro

Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.