molecular formula C14H18N6O B1662851 Abacavir CAS No. 136470-78-5

Abacavir

Cat. No.: B1662851
CAS No.: 136470-78-5
M. Wt: 286.33 g/mol
InChI Key: MCGSCOLBFJQGHM-UHFFFAOYSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

Abacavir is a synthetic carbocyclic nucleoside analog reverse transcriptase inhibitor used primarily in the treatment of Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS). It is marketed under the brand name Ziagen among others. This compound is typically used in combination with other antiretroviral medications and is not recommended for use alone . It is known for its ability to inhibit the replication of HIV by targeting the reverse transcriptase enzyme, which is crucial for the virus’s replication process .

Mechanism of Action

Target of Action

Abacavir is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1) . The primary target of this compound is the HIV-1 reverse transcriptase enzyme . This enzyme is crucial for the replication of the HIV virus, as it is responsible for the transcription of viral RNA into DNA .

Mode of Action

This compound is converted by cellular enzymes to the active metabolite carbovir triphosphate, an analogue of deoxyguanosine-5’-triphosphate (dGTP) . This active metabolite competes with natural nucleotides for incorporation into the viral DNA . When incorporated, it inhibits the HIV reverse transcriptase enzyme competitively and acts as a chain terminator of DNA synthesis . This prevents the virus from replicating and reduces the viral load in the body .

Biochemical Pathways

This compound interferes with the reverse transcription process, a critical step in the HIV life cycle . By inhibiting the reverse transcriptase enzyme, it prevents the conversion of viral RNA into DNA, thus blocking the integration of viral DNA into the host genome . This ultimately leads to a decrease in viral replication and an increase in CD4 cell counts .

Pharmacokinetics

This compound is rapidly absorbed following oral administration, with a mean absolute bioavailability of approximately 83% . Maximum this compound concentrations are observed in serum within 0.5 to 3.0 hours of dosing in the fasted state (median Tmax of 1 - 1.5 hour) . The elimination half-life of this compound is 1.5 hours . It is primarily metabolized through cytosolic alcohol dehydrogenase (ADH) and uridine diphosphate glucuronosyltransferase (UGT) enzymes .

Action Environment

The efficacy and stability of this compound can be influenced by various environmental factors. For instance, genetic factors can play a significant role. The presence of the HLA-B*57:01 allele is strongly linked to the occurrence of a hypersensitivity reaction to this compound . Therefore, testing for this allele prior to this compound treatment is recommended . Additionally, drug interactions can also influence the action of this compound. Since this compound is primarily metabolized by ADH and UGT enzymes, no interactions between this compound and inducers or inhibitors of cytochrome P450 (CYP) enzymes are predicted .

Preparation Methods

Synthetic Routes and Reaction Conditions: The synthesis of abacavir involves several steps, starting from a suitable di-halo aminopyrimidine compound. The key steps include:

Industrial Production Methods: Industrial production of this compound often involves optimizing the reaction conditions to ensure high yield and purity. This includes controlling the temperature, pH, and the use of specific catalysts to facilitate the reactions. The process may also involve purification steps such as crystallization and chromatography to isolate the final product .

Types of Reactions:

Common Reagents and Conditions:

    Oxidation: Hydrogen peroxide, platinum electrodes, boron-doped diamond electrodes.

    Substitution: Cyclopropylamine, various solvents and catalysts.

Major Products:

Scientific Research Applications

Abacavir has a wide range of applications in scientific research, particularly in the fields of chemistry, biology, and medicine:

Comparison with Similar Compounds

    Lamivudine: Another nucleoside reverse transcriptase inhibitor used in combination with abacavir.

    Zidovudine: An older nucleoside reverse transcriptase inhibitor with a similar mechanism of action.

    Tenofovir: A nucleotide reverse transcriptase inhibitor with a different chemical structure but similar antiviral activity.

Comparison:

Properties

IUPAC Name

[4-[2-amino-6-(cyclopropylamino)purin-9-yl]cyclopent-2-en-1-yl]methanol
Details Computed by Lexichem TK 2.7.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C14H18N6O/c15-14-18-12(17-9-2-3-9)11-13(19-14)20(7-16-11)10-4-1-8(5-10)6-21/h1,4,7-10,21H,2-3,5-6H2,(H3,15,17,18,19)
Details Computed by InChI 1.0.6 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

MCGSCOLBFJQGHM-UHFFFAOYSA-N
Details Computed by InChI 1.0.6 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1CC1NC2=C3C(=NC(=N2)N)N(C=N3)C4CC(C=C4)CO
Details Computed by OEChem 2.3.0 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C14H18N6O
Details Computed by PubChem 2.1 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID20861337
Record name 4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID20861337
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

286.33 g/mol
Details Computed by PubChem 2.1 (PubChem release 2021.05.07)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

136470-78-5, 914348-29-1
Record name NSC742406
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=742406
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name 4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID20861337
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Abacavir
Reactant of Route 2
Abacavir
Reactant of Route 3
Abacavir
Reactant of Route 4
Abacavir
Reactant of Route 5
Reactant of Route 5
Abacavir
Reactant of Route 6
Abacavir

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.